Solveeit Logo

Question

Mathematics Question on Determinants

The characteristic equation of a matrix AA is λ35λ23λ+2=0\lambda^3 - 5\lambda^2 - 3\lambda + 2 = 0 then adj(A)| adj (A) | is equal to

A

99

B

2525

C

12\frac {1}{2}

D

44

Answer

44

Explanation

Solution

We know that, [00c 10b 01a]\begin{bmatrix}0&0&-c\\\ 1&0&-b\\\ 0&1&-a\end{bmatrix}iff λ3+aλ2+bλ+c=0\lambda^{3}+a\lambda^{2}+b\lambda+c=0 But given that , λ35λ23λ+2=0\lambda^{3}-5\lambda^{2}-3\lambda+2=0 A=[002 103 015]\therefore A=\begin{bmatrix}0&0&-2\\\ 1&0&3\\\ 0&1&5\end{bmatrix} Now, A=[002 123 015]\left|A\right|=\begin{bmatrix}0&0&-2\\\ 1&2&3\\\ 0&1&5\end{bmatrix} =0+02(10)=2= 0 + 0 - 2 (1 - 0) = - 2 adjA=A2=(2)2=4\therefore \left|adj\, A \left|=\right| A^{2} = \left(- 2\right)^{2} = 4\right|