Solveeit Logo

Question

Physics Question on Dimensional Analysis

The characteristic distance at which quantum gravitational effects are significant, the Planck length, can be determined from a suitable combination of the fundamental physical constants G,hG, h and cc. Which of the following correctly gives the Planck length ?

A

G2c3G \hbar^2 \, c^3

B

G2cG^2 \hbar \, c

C

G1/22cG^{1/2} \hbar^2 \, c

D

(Gc3)1/2\left( \frac{G \hbar}{c^3} \right)^{1/2}

Answer

(Gc3)1/2\left( \frac{G \hbar}{c^3} \right)^{1/2}

Explanation

Solution

Given Planck length ll can be determined from suitable combination of G,G, \hbar and cc. Therefore,
l=f(G,h,c)=[M1L3T2]x[ML2T1]y[LT1]2=M2MyL3xL2yLzT2xTyTzl=f(G, h, c)=\left[ M ^{-1} \,L ^{3}\, T ^{-2}\right]^{ x }\left[ M\,L ^{2}\, T ^{-1}\right]^{y}\left[ LT ^{-1}\right]^{2}= M ^{-2}\, M ^{y}\, L ^{3 x} \,L ^{2 y}\, L ^{z}\, T ^{-2 x} \,T ^{-y}\, T ^{z}
ML1T0=Mx+yL3x+2y+zT2xyz\Rightarrow M ^{\circ} L ^{1} T ^{0}= M ^{x+y}\, L ^{3 x+2 y+z} \,T ^{-2 x-y-z}
Equating the exponents, we have
x+y=0x=y-x+y =0 \Rightarrow x=y
2xyz=0-2 x-y-z =0
2xxz=0\Rightarrow-2 x-x-z=0
z=3x\Rightarrow z=-3 x
3x+2y+z=13 x+2 y+z =1
3x+2x3x=1\Rightarrow 3 x+2 x-3 x=1
x=12\Rightarrow x=\frac{1}{2}
x=12,y=12,z=32\Rightarrow x =\frac{1}{2}, y=\frac{1}{2}, z=\frac{-3}{2}
Therefore, l=G1/2h1/2c3/2=Gc3l =G^{1 / 2}\,h^{1 / 2}\, c^{-3 / 2}=\sqrt{\frac{G \hbar}{c^{3}}}