Solveeit Logo

Question

Chemistry Question on Electrochemistry

The change in potential of the half-cell Cu2+CuCu^{2+}|Cu, when aqueous Cu2+Cu^{2+} solution is diluted 100100 times at 298K298 \,K ? (2.303RTF=0.06)\left( \frac{2.303 RT}{F} = 0.06 \right)

A

increases by 120 mV

B

decreases by 120 mV

C

increases by 60 mV

D

decreases by 60 mV

Answer

decreases by 60 mV

Explanation

Solution

Half cell reaction is

Cu2++2eCu;n=2Cu ^{2+}+2 e^{-} \longrightarrow Cu ; n=2

From Nernst equation,

E=E2.303RTnFlog1[Cu2+]E =E^{\circ}-\frac{2.303\, R T}{n F} \log \frac{1}{\left[ Cu ^{2+}\right]}
E1=E+0.062log[Cu2+]E_{1} =E^{\circ}+\frac{0.06}{2} \log \left[ Cu ^{2+}\right]

Let the initial concentration of Cu2+Cu ^{2+} be 11 .

E1=E+0.062log1=E+0E1=EE_{1}=E^{\circ}+\frac{0.06}{2} \log 1=E^{\circ}+0 \,\,\,\therefore E_{1}=E^{\circ}

Further, the [Cu2+]\left[ Cu ^{2+}\right] solution is dilued to 100100 times.

M1V1Initial=M2V2After dilution\therefore \underset{\text{Initial}}{M_{1} V_{1}}=\underset{\text{After dilution}}{M_{2} V_{2}}
1×1=M2×1001 \times 1 =M_{2} \times 100
M2=1100=0.01M_{2} =\frac{1}{100}=0.01
E2=E+0.0592log[0.01]\therefore E_{2}=E^{\circ}+\frac{0.059}{2} \log [0.01]
=E+0.0592(2)=E^{\circ}+\frac{0.059}{2}(-2)
=F10.059V=F159mV=F_{1}-0.059\, V =F_{1}-59\, mV

Thus, the potential decreases by 59(60)mV59(\approx 60) \,mV.