Solveeit Logo

Question

Physics Question on Gravitational Potential Energy

The change in potential energy when a body of mass mm is raised to a height nRnR from earths surface is (R = radius of the earth)

A

mgR=n(n1)mgR=\frac{n}{(n-1)}

B

mgRmgR

C

mgR=n(n+1)mgR=\frac{n}{(n+1)}

D

mgR=n2(n2+1)mgR=\frac{{{n}^{2}}}{({{n}^{2}}+1)}

Answer

mgR=n(n+1)mgR=\frac{n}{(n+1)}

Explanation

Solution

Change in potential energy
ΔU=U2U1\Delta U={{U}_{2}}-{{U}_{1}}
\therefore ΔU=GMm(R+nR)+GMmR\Delta U=-\frac{GMm}{(R+nR)}+\frac{GMm}{R}
Or ΔU=GMmR(1+n)+GMmR\Delta U=-\frac{GMm}{R(1+n)}+\frac{GMm}{R}
Or ΔU=GMmR[11+n+1]\Delta U=\frac{GMm}{R}\left[ -\frac{1}{1+n}+1 \right]
Or ΔU=(R2g)mR×n(1+n)\Delta U=\frac{({{R}^{2}}g)m}{R}\times \frac{n}{(1+n)}
[g=GMR2]\left[ \because g=\frac{GM}{{{R}^{2}}} \right]
Or ΔU=mgR(nn+1)\Delta U=mgR\left( \frac{n}{n+1} \right)