Solveeit Logo

Question

Question: The chances of defective screws in three boxes A, B, C are \(\frac { 1 } { 5 } , \frac { 1 } { 6 } ,...

The chances of defective screws in three boxes A, B, C are 15,16,17\frac { 1 } { 5 } , \frac { 1 } { 6 } , \frac { 1 } { 7 } respectively. A box is selected at random and a

screw drawn from it at random is found to be defective. Then the probability that it came from box A is

A

16/29

B

1/15

C

27/59

D

42/107

Answer

42/107

Explanation

Solution

Let E1,E2\mathrm { E } _ { 1 } , \mathrm { E } _ { 2 } and denote the events of selecting box A,B,C respectively and A be the event that a screw selected at random is defective.

Then P(E1)=P(E2)=P(E3)=1/3\mathrm { P } \left( \mathrm { E } _ { 1 } \right) = \mathrm { P } \left( \mathrm { E } _ { 2 } \right) = \mathrm { P } \left( \mathrm { E } _ { 3 } \right) = 1 / 3

P(A/E1)=15,P(A/E2)=16,P(A/E3)=17\mathrm { P } \left( \mathrm { A } / \mathrm { E } _ { 1 } \right) = \frac { 1 } { 5 } , \mathrm { P } \left( \mathrm { A } / \mathrm { E } _ { 2 } \right) = \frac { 1 } { 6 } , \mathrm { P } \left( \mathrm { A } / \mathrm { E } _ { 3 } \right) = \frac { 1 } { 7 }

By Baye's rule,

Required probability P(E1/A)\mathrm { P } \left( \mathrm { E } _ { 1 } / \mathrm { A } \right)

=P(E1)P(A/E1)P(E1)P(A/E1)+P(E2)P(A/E2)+P(E3)P(A/E3)= \frac { P \left( E _ { 1 } \right) \mathrm { P } \left( \mathrm { A } / \mathrm { E } _ { 1 } \right) } { \mathrm { P } \left( \mathrm { E } _ { 1 } \right) \mathrm { P } \left( \mathrm { A } / \mathrm { E } _ { 1 } \right) + \mathrm { P } \left( \mathrm { E } _ { 2 } \right) \mathrm { P } \left( \mathrm { A } / \mathrm { E } _ { 2 } \right) + \mathrm { P } \left( \mathrm { E } _ { 3 } \right) \mathrm { P } \left( \mathrm { A } / \mathrm { E } _ { 3 } \right) } =13×1513×15×13×16×13×17=42107= \frac { \frac { 1 } { 3 } \times \frac { 1 } { 5 } } { \frac { 1 } { 3 } \times \frac { 1 } { 5 } \times \frac { 1 } { 3 } \times \frac { 1 } { 6 } \times \frac { 1 } { 3 } \times \frac { 1 } { 7 } } = \frac { 42 } { 107 }