Solveeit Logo

Question

Question: The centroid of the triangle is \(\left( {3,3} \right)\)and the orthocenter is\(\left( {3, - 5} \rig...

The centroid of the triangle is (3,3)\left( {3,3} \right)and the orthocenter is(3,5)\left( {3, - 5} \right), then its circumcenter is
a. (0,4) b. (0,8) c. (6,2) d. (6,2)  {\text{a}}{\text{. }}\left( {0,4} \right) \\\ {\text{b}}{\text{. }}\left( {0,8} \right) \\\ {\text{c}}{\text{. }}\left( {6,2} \right) \\\ {\text{d}}{\text{. }}\left( {6, - 2} \right) \\\

Explanation

Solution

Hint: - Centroid divides the line joining orthocenter and circumcenter in the ratio2:12:1

As we know the centroid divides the line joining orthocenter and circumcenter in the ratio2:12:1
Given orthocenter coordinates is (3,5)\left( {3, - 5} \right)and centroid coordinates is(3,3)\left( {3,3} \right)
Let the circumcenter be(x,y)\left( {x,y} \right)
Then by section formula the coordinates of centroid is written as
3=mx3nm+n, 3=my(5)nm+n3 = \frac{{mx - 3n}}{{m + n}},{\text{ }}3 = \frac{{my - \left( { - 5} \right)n}}{{m + n}}
Herem=2m = 2andn=1n = 1

3=2x32+1, 3=2y+52+1 9=2x3, 9=2y+5 x=122=6 y=42=2  3 = \frac{{2x - 3}}{{2 + 1}},{\text{ }}3 = \frac{{2y + 5}}{{2 + 1}} \\\ \Rightarrow 9 = 2x - 3,{\text{ }}9 = 2y + 5 \\\ \Rightarrow x = \frac{{12}}{2} = 6 \\\ \Rightarrow y = \frac{4}{2} = 2 \\\

Therefore the coordinates of circumcenter is(6,2)\left( {6,2} \right)
Hence option c is correct.
Note: - In such types of question the key concept we have to remember is that the centroid divides the line joining orthocenter and circumcenter in the ratio2:12:1, then apply the section formula which is stated above, so after simplification we will get the required coordinates of the circumcenter.