Solveeit Logo

Question

Mathematics Question on Straight lines

The centroid of the triangle formed by joining the mid points of the sides of a triangle with vertices (1,1),(2,4)(-1,-1),(2,4) and (5,6)(-5,-6) is

A

(23,1)\left( -\frac{2}{3},1 \right)

B

(43,1)\left( -\frac{4}{3},-1 \right)

C

(13,12)\left( -\frac{1}{3},\frac{1}{2} \right)

D

(14,14)\left( -\frac{1}{4},\frac{1}{4} \right)

Answer

(43,1)\left( -\frac{4}{3},-1 \right)

Explanation

Solution

Midpoint of AB=D(12,32)AB=D\left( \frac{1}{2},\frac{3}{2} \right)

Midpoint of BC=E(32,1)BC=E\left( -\frac{3}{2},-1 \right)
and mid point of
AC=F(3,72)AC=F\left( -3,-\frac{7}{2} \right)
ΔDEF\Delta \,DEF is the triangle whose centroid is to be determined.

\therefore Centroid of ΔDEF\Delta \,\,DEF

is (123323,327213)\left( \frac{\frac{1}{2}-3-\frac{3}{2}}{3},\frac{\frac{3}{2}-\frac{7}{2}-1}{3} \right)

=(1636,3726)=(43,1)=\left( \frac{1-6-3}{6},\frac{3-7-2}{6} \right)=\left( -\frac{4}{3},-1 \right)