Solveeit Logo

Question

Question: The centre of the hyperbola \(9x^{2} - 36x - 16y^{2} + 96y - 252 = 0\) is...

The centre of the hyperbola 9x236x16y2+96y252=09x^{2} - 36x - 16y^{2} + 96y - 252 = 0 is

A

(2, 3)

B

(– 2, – 3)

C

(–2, 3)

D

(2, – 3)

Answer

(2, 3)

Explanation

Solution

Here a=9,a = 9, b=16,b = - 16, h=0h = 0, g=18g = - 18, f=48f = 48 , c=252c = - 252

Centre of hyperbola = (hfbgabh2,ghafabh2)\left( \frac{hf - bg}{ab - h^{2}},\frac{gh - af}{ab - h^{2}} \right) =

((0)(48)(16)(18)(9)(16)0,(18)(0)(9)(48)(9)(16)0)\left( \frac{(0)(48) - ( - 16)( - 18)}{(9)( - 16) - 0},\frac{( - 18)(0) - (9)(48)}{(9)( - 16) - 0} \right) = (2, 3)