Solveeit Logo

Question

Question: The centre of the circle \(r ^ { 2 } = 2 - 4 r \cos \theta + 6 r \sin \theta\) is...

The centre of the circle r2=24rcosθ+6rsinθr ^ { 2 } = 2 - 4 r \cos \theta + 6 r \sin \theta is

A

(2, 3)

B

(– 2, 3)

C

(– 2, – 3)

D

(2, – 3)

Answer

(– 2, 3)

Explanation

Solution

Let r cos θ = x and r sin θ = y

Squaring and adding, we get r2=x2+y2r ^ { 2 } = x ^ { 2 } + y ^ { 2 } .

Putting these values in given equation, x2+y2=24x+6yx ^ { 2 } + y ^ { 2 } = 2 - 4 x + 6 y

Hence, centre of the circle = (–2, 3)