Solveeit Logo

Question

Question: The centre of the circle \(x = - 1 + 2 \cos \theta\), \(y = 3 + 2 \sin \theta\) , is....

The centre of the circle x=1+2cosθx = - 1 + 2 \cos \theta, y=3+2sinθy = 3 + 2 \sin \theta , is.

A

(1, –3)

B

(–1, 3)

C

(1, 3)

D

None of these

Answer

(–1, 3)

Explanation

Solution

Given that x+12=cosθ\frac { x + 1 } { 2 } = \cos \theta.

Also y32=sinθ\frac { y - 3 } { 2 } = \sin \theta (x+12)2+(y32)2=1\Rightarrow \left( \frac { x + 1 } { 2 } \right) ^ { 2 } + \left( \frac { y - 3 } { 2 } \right) ^ { 2 } = 1

(x+1)2+(y3)2=4\Rightarrow ( x + 1 ) ^ { 2 } + ( y - 3 ) ^ { 2 } = 4 , whose centre is (1,3)( - 1,3 ) .