Solveeit Logo

Question

Question: The centre of the circle given by \(\mathbf{r}.(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 15\) and \...

The centre of the circle given by r.(i+2j+2k)=15\mathbf{r}.(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 15 and r(j+2k)=4|\mathbf{r} - (\mathbf{j} + 2\mathbf{k})| = 4is

A

(0, 1, 2)

B

(1, 3, 4)

C

(–1, 3, 4)

D

None of these

Answer

(1, 3, 4)

Explanation

Solution

The equation of a line through the centre j+2k\mathbf{j} + 2\mathbf{k} and normal to the given plane is

r=j+2k+λ(i+2j+2k)\mathbf{r} = \mathbf{j} + 2\mathbf{k} + \lambda(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) .....(i)

This meets the plane at a point for which we must have ((j+2k)+λ(i+2j+2k)).(i+2j+2k)=15((\mathbf{j} + 2\mathbf{k}) + \lambda(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})).(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 15

6+λ(9)=15λ=16 + \lambda(9) = 15 \Rightarrow \lambda = 1.

Putting λ=1\lambda = 1 in (i), we obtain the position vector of the centre as i+3j+4k\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}. Hence, the coordinates of the centre of the circle are (1, 3, 4).