Solveeit Logo

Question

Question: The centre of the circle az\(\bar{z}\)+ (b–i)z +(b+i) \(\bar{z}\)–1= 0,(a,b,ĪR) is (5 + i) then:...

The centre of the circle azzˉ\bar{z}+ (b–i)z +(b+i) zˉ\bar{z}–1= 0,(a,b,ĪR) is (5 + i) then:

A

|a + b| = 5

B

a = –2, b = 6

C

a = –2, b = 6

D

Radius of circle = 5

Answer

Radius of circle = 5

Explanation

Solution

Sol. –b+ia\frac{b + i}{a}= 5 + i Ž a = –1

b = –5

radius =5+i21\sqrt{|5 + i|^{2} - 1}= 5