Solveeit Logo

Question

Question: The centre of mass of triangle shown in figure has coordinates: <img src="https://cdn.pureessence.t...

The centre of mass of triangle shown in figure has coordinates:

A

x=h2,y=b2x = \frac{h}{2},y = \frac{b}{2}

B

x=b2,y=b2x = \frac{b}{2},y = \frac{b}{2}

C

x=b3,y=h3x = \frac{b}{3},y = \frac{h}{3}

D

x=h3,y=b3x = \frac{h}{3},y = \frac{b}{3}

Answer

x=b3,y=h3x = \frac{b}{3},y = \frac{h}{3}

Explanation

Solution

We can assume that three particles of equal mass m are placed at the corners of triangle

r1=0i^+0j^,6mur2=bi^+0j^\overset{\rightarrow}{r_{1}} = 0\widehat{i} + 0\widehat{j},\mspace{6mu}\overset{\rightarrow}{r_{2}} = b\widehat{i} + 0\widehat{j} and r3=0i^+hj^\overset{\rightarrow}{r_{3}} = 0\widehat{i} + h\widehat{j}

\therefore rcm=m1r1+m2r2+m3r3m1+m2+m3=b3i^+h3j^\overset{\rightarrow}{r_{cm}} = \frac{m_{1}\overset{\rightarrow}{r_{1}} + m_{2}\overset{\rightarrow}{r_{2}} + m_{3}\overset{\rightarrow}{r_{3}}}{m_{1} + m_{2} + m_{3}} = \frac{b}{3}\widehat{i} + \frac{h}{3}\widehat{j}

i.e. coordinates of centre of mass is (b3,h3)\left( \frac{b}{3},\frac{h}{3} \right)