Solveeit Logo

Question

Physics Question on Centre of mass

The centre of mass of a non uniform rod of length L whose mass per unit length λ=Kx2L,\lambda=\frac{Kx^2}{L}, Where k is a constant and x is the distance from one end is :

A

3L4\frac{3L}{4}

B

L8\frac{L}{8}

C

KL\frac{K}{L}

D

3KL\frac{3K}{L}

Answer

3L4\frac{3L}{4}

Explanation

Solution

dm=kx2Ldxdm = \frac{kx^2}{L} dx xcm=0Lxdm0Ldm=0Lkx3Ldx0Lkx2Ldx=(L44)(L33)=3L4x_{cm} = \frac{\int\limits_0^L xdm}{\int\limits_0^L dm} = \frac{\int\limits_0^L \frac{kx^3}{L} dx}{\int\limits_0^L \frac{kx^2}{L} dx} = \frac{\left(\frac{L^4}{4} \right)}{\left(\frac{L^3}{3} \right)} = \frac{3L}{4}