Solveeit Logo

Question

Question: The centre of family of circles cutting the family of circles $x^2 + y^2 + 2x \left( \lambda - \frac...

The centre of family of circles cutting the family of circles x2+y2+2x(λ32)+6y(λ23)8(λ+4)=0x^2 + y^2 + 2x \left( \lambda - \frac{3}{2} \right) + 6y \left( \lambda - \frac{2}{3} \right) - 8(\lambda + 4) = 0 orthogonally, lies on

A

x-y-1=0

B

x+3y-4=0

C

4x+3y+7=0

D

3x-4y-1=0

Answer

x+3y-4=0

Explanation

Solution

The given family of circles is

x2+y2+2x(λ32)+6y(λ23)8(λ+4)=0x^2 + y^2 + 2x\left(\lambda - \frac{3}{2}\right) + 6y\left(\lambda - \frac{2}{3}\right) -8(\lambda+4)=0.

Step 1: Expand and simplify:

Distribute the terms: 2x(λ32)=2λx3x2x\left(\lambda - \frac{3}{2}\right) = 2\lambda x - 3x,

6y(λ23)=6λy4y6y\left(\lambda - \frac{2}{3}\right) = 6\lambda y - 4y,

8(λ+4)=8λ32-8(\lambda+4) = -8\lambda -32.

Thus, the equation becomes: x2+y23x4y32+λ(2x+6y8)=0x^2+y^2 - 3x - 4y -32 + \lambda(2x+6y-8)=0.

Step 2: Use the radical axis method:

Consider two circles from the family corresponding to different λ\lambda values, say λ1\lambda_1 and λ2\lambda_2:

S1:  x2+y23x4y32+λ1(2x+6y8)=0S_1: \; x^2+y^2 - 3x - 4y -32 + \lambda_1(2x+6y-8)=0,

S2:  x2+y23x4y32+λ2(2x+6y8)=0S_2: \; x^2+y^2 - 3x - 4y -32 + \lambda_2(2x+6y-8)=0.

Subtract S2S_2 from S1S_1:

(S1S2):(λ1λ2)(2x+6y8)=0(S_1 - S_2): \quad (\lambda_1 - \lambda_2)(2x+6y-8)=0.

Since λ1λ2\lambda_1 \neq \lambda_2,

2x+6y8=02x+6y-8=0.

Dividing by 2:

x+3y4=0x+3y-4=0.

This line is the radical axis, and the centers of the circles cutting the given family orthogonally lie on this line.