Question
Question: The centre of circle z = \(\frac{3i - t}{2 + it}\) (tĪR) must be –...
The centre of circle z = 2+it3i−t (tĪR) must be –
A
(0,43)
B
(0, 0)
C
(0,45)
D
None
Answer
(0,45)
Explanation
Solution
Sol. x + iy = 2+it3i−t⋅2−it2−it =4+t2(−2t+3t)+i(6+t2)
\ x = 4+t2t & y = 4+t26+t2
\ x2 + y2 = t2+4t2+9 = t2+41+5 = 1+ 25 (y – 1)
Ž x2 + y2 = 25y−23 Žx2 + y2 – 25y+23=0