Solveeit Logo

Question

Question: The centre of circle z = \(\frac{3i - t}{2 + it}\) (tĪR) must be –...

The centre of circle z = 3it2+it\frac{3i - t}{2 + it} (tĪR) must be –

A

(0,34)\left( 0,\frac{3}{4} \right)

B

(0, 0)

C

(0,54)\left( 0,\frac{5}{4} \right)

D

None

Answer

(0,54)\left( 0,\frac{5}{4} \right)

Explanation

Solution

Sol. x + iy = 3it2+it2it2it\frac{3i - t}{2 + it} \cdot \frac{2 - it}{2 - it} =(2t+3t)+i(6+t2)4+t2\frac{( - 2t + 3t) + i(6 + t^{2})}{4 + t^{2}}

\ x = t4+t2\frac{t}{4 + t^{2}} & y = 6+t24+t2\frac{6 + t^{2}}{4 + t^{2}}

\ x2 + y2 = t2+9t2+4\frac{t^{2} + 9}{t^{2} + 4} = 1+5t2+4\frac{1 + 5}{t^{2} + 4} = 1+ 52\frac{5}{2} (y – 1)

Ž x2 + y2 = 5y232\frac{5y}{2} - \frac{3}{2} Žx2 + y25y2+32=0\frac{5y}{2} + \frac{3}{2} = 0