Solveeit Logo

Question

Question: The centre of an ellipse is C and PN is any ordinate and A, A' are the end points of major axis, the...

The centre of an ellipse is C and PN is any ordinate and A, A' are the end points of major axis, then the value of PN2AN.AN\frac{PN^{2}}{AN.A'N} is

A

b2a2\frac{b^{2}}{a^{2}}

B

a2b2\frac{a^{2}}{b^{2}}

C

a2 + b2

D

1

Answer

b2a2\frac{b^{2}}{a^{2}}

Explanation

Solution

Let P(a cos q, b sin q)

PN = b sin q

Ž AN = a – a cos q

Ž A'N = a + a cos q

ŽPN2ANAN=b2sin2θ(aacosθ)(a+acosθ)\frac{PN^{2}}{AN \cdot A'N} = \frac{b^{2}\sin^{2}\theta}{(a - a\cos\theta)(a + a\cos\theta)} = b2a2\frac{b^{2}}{a^{2}}