Solveeit Logo

Question

Mathematics Question on Conic sections

The centre of a circle passing through the points (0,0),(1,0) (0, 0),(1, 0) and touching the circle x2+y2=9x^2 + y^2 = 9 is

A

(3/2,1/2)(3/2, \, 1/2)

B

(1/2,3/2)(1/2, \, 3/2)

C

(1/2,1/2)(1/2, \, 1/2)

D

(1/2,121/2)(1/2, \, 12^{1/2})

Answer

(1/2,121/2)(1/2, \, 12^{1/2})

Explanation

Solution

Let C1(h,k)C_1 (h , k) be the centre of the required circle. Then,
(h0)2+(k0)2=(h1)2+(k0)2\sqrt{(h-0)^2 + (k-0)^2} = \sqrt{(h-1)^2 + (k-0)^2}
(h0)2+(k0)2=(h1)2+(k0)2\, \, \, \, \sqrt{(h-0)^2 + (k-0)^2} = \sqrt{(h-1)^2 + (k-0)^2}
h2+k2=h22h+1+k2\Rightarrow \, \, \, \, \, \, h^2 + k^2 = h^2 - 2h + 1 + k^2
2h+1=0h=1/2\Rightarrow \, \, \, \, \, \, -2h + 1 = 0 \Rightarrow h = 1/2
Since, (0, 0) and (1, 0) lie inside the circle x2+y2=9x^2+ y^2 =9.
Therefore, the required circle can touch the given circle
internally.
i.e.C1.C2=r1r2i.e. \, \, \, \, \, \, \, \, \, C_1. C_2 = r_1 \sim r_2
h2+k2=3h2+K2\Rightarrow \, \, \, \, \, \, \sqrt{h^2 + k^2} = 3 - \sqrt{h^2 + K^2}
2h2+k2=3214+K2=3\Rightarrow \, \, \, \, \, \, 2\sqrt{h^2 + k^2} = 3 \Rightarrow 2\sqrt{\frac{1}{4} + K^2 = 3}
14+k2=3214+k2=94\Rightarrow \, \, \, \, \, \, \sqrt{\frac{1}{4} + k^2} = \frac{3}{2} \Rightarrow \frac{1}{4} + k^2 = \frac{9}{4}
k2=2k=±2\Rightarrow \, \, \, \, \, \, \, k^2 = 2 \Rightarrow k = \pm \sqrt2