Solveeit Logo

Question

Question: The centre of a circle is (2, –3) and the circumference is \(10 \pi\) . Then the equation of the ci...

The centre of a circle is (2, –3) and the circumference is 10π10 \pi . Then the equation of the circle is.

A

x2+y2+4x+6y+12=0x ^ { 2 } + y ^ { 2 } + 4 x + 6 y + 12 = 0

B

x2+y24x+6y+12=0x ^ { 2 } + y ^ { 2 } - 4 x + 6 y + 12 = 0

C

x2+y24x+6y12=0x ^ { 2 } + y ^ { 2 } - 4 x + 6 y - 12 = 0

D

x2+y24x6y12=0x ^ { 2 } + y ^ { 2 } - 4 x - 6 y - 12 = 0

Answer

x2+y24x+6y12=0x ^ { 2 } + y ^ { 2 } - 4 x + 6 y - 12 = 0

Explanation

Solution

Centre (2, – 3)

Circumference =10π= 10 \pi2πr=10π2 \pi r = 10 \pi

From (xh)2+(yk)2=r2( x - h ) ^ { 2 } + ( y - k ) ^ { 2 } = r ^ { 2 },

(x2)2+(y+3)2=52( x - 2 ) ^ { 2 } + ( y + 3 ) ^ { 2 } = 5 ^ { 2 }

x2+y24x+6y+13=25x ^ { 2 } + y ^ { 2 } - 4 x + 6 y + 13 = 25

x2+y24x+6y12=0x ^ { 2 } + y ^ { 2 } - 4 x + 6 y - 12 = 0,

which is the required equation of the circle.