Solveeit Logo

Question

Question: The center of the conic section \(14{{x}^{2}}-4xy+11{{y}^{2}}-44x-58y+71=0\) is: (a). \(\left( 2,3...

The center of the conic section 14x24xy+11y244x58y+71=014{{x}^{2}}-4xy+11{{y}^{2}}-44x-58y+71=0 is:
(a). (2,3)\left( 2,3 \right)
(b). (2,3)\left( 2,-3 \right)
(c). (2,3)\left( -2,3 \right)
(d). (2,3)\left( -2,-3 \right)

Explanation

Solution

Hint: Compare the given equation with the general form of a conic section:
ax2+2hxy+by2+2gx+2fy+c=0a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0
Find the values of the coefficients. Then solve the following equations to find out the center:
ax1+hy1+g=0 hx1+by1+f=0 \begin{aligned} & a{{x}_{1}}+h{{y}_{1}}+g=0 \\\ & h{{x}_{1}}+b{{y}_{1}}+f=0 \\\ \end{aligned}

Complete step-by-step answer:
If a point moves in a plane in such a way that its distance from a fixed point always bears a constant ratio to its distance from a fixed straight line, then the locus of the moving point is called a conic section or simply a conic.
We know that the general form of a conic section is:
ax2+2hxy+by2+2gx+2fy+c=0.....(1)a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0.....(1)
Let the center of the conic be at (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right).
Then the center of the conic will satisfy the following equations:
ax1+hy1+g=0 hx1+by1+f=0 \begin{aligned} & a{{x}_{1}}+h{{y}_{1}}+g=0 \\\ & h{{x}_{1}}+b{{y}_{1}}+f=0 \\\ \end{aligned}
We can find out the center of the conic by solving these two equations.
Now the given equation is:
14x24xy+11y244x58y+71=0.....(2)14{{x}^{2}}-4xy+11{{y}^{2}}-44x-58y+71=0.....(2)
Now if we compare the coefficients of the variables from (1) and (2) we will get,
a=14a=14
b=11b=11
2h=4h=22h=-4\Rightarrow h=-2
2g=44g=222g=-44\Rightarrow g=-22
2f=58f=292f=-58\Rightarrow f=-29
c=71c=71
Let the center of the conic be at (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right).
The center will satisfy the following equations:
ax1+hy1+g=0 hx1+by1+f=0 \begin{aligned} & a{{x}_{1}}+h{{y}_{1}}+g=0 \\\ & h{{x}_{1}}+b{{y}_{1}}+f=0 \\\ \end{aligned}
Let us put the values of the coefficients,
14x12y122=0.......(3) 2x1+11y129=0.......(4) \begin{aligned} & 14{{x}_{1}}-2{{y}_{1}}-22=0.......(3) \\\ & -2{{x}_{1}}+11{{y}_{1}}-29=0.......(4) \\\ \end{aligned}
We will solve these to equations by cancelling out x1{{x}_{1}} from (1) and (2)
To cancel out x1{{x}_{1}} we have to make the coefficients the same.
Let us multiply equation (4) by 7, we will get:
14x1+77y1203=0......(5)-14{{x}_{1}}+77{{y}_{1}}-203=0......(5)
Now by adding equation (3) and (4), we will get:
14x12y12214x1+77y1203=014{{x}_{1}}-2{{y}_{1}}-22-14{{x}_{1}}+77{{y}_{1}}-203=0
By cancelling out the same terms we will get:
2y122+77y1203=0 75y1225=0 75y1=225 y1=3 \begin{aligned} & \Rightarrow -2{{y}_{1}}-22+77{{y}_{1}}-203=0 \\\ & \Rightarrow 75{{y}_{1}}-225=0 \\\ & \Rightarrow 75{{y}_{1}}=225 \\\ & \Rightarrow {{y}_{1}}=3 \\\ \end{aligned}
Now let us put the value of y1{{y}_{1}} in (3) to find out the value of x1{{x}_{1}}:
14x1(2×3)22=0 14x1622=0 14x128=0 14x1=28 x1=2 \begin{aligned} & 14{{x}_{1}}-\left( 2\times 3 \right)-22=0 \\\ & \Rightarrow 14{{x}_{1}}-6-22=0 \\\ & \Rightarrow 14{{x}_{1}}-28=0 \\\ & \Rightarrow 14{{x}_{1}}=28 \\\ & \Rightarrow {{x}_{1}}=2 \\\ \end{aligned}
Therefore, x1=2,y1=3{{x}_{1}}=2,{{y}_{1}}=3
Hence the center of the given conic is (2,3)\left( 2,3 \right).
Therefore option (a) is correct.

Note: We can also find out center of a conic by the following formula:
x1=hfbgabh2,y1=ghafabh2{{x}_{1}}=\dfrac{hf-bg}{ab-{{h}^{2}}},{{y}_{1}}=\dfrac{gh-af}{ab-{{h}^{2}}}