Solveeit Logo

Question

Mathematics Question on Circle

The center of the circle x=2+3cosθ,y=3sinθ1x = 2 + 3 \cos \theta ,y=3\, \sin \theta -1 is

A

(3,3)

B

(2, -1)

C

(- 2, 1)

D

(- 1, 2)

Answer

(2, -1)

Explanation

Solution

Given parametric equations are
x=2+3cosθ,y=3sinθ1x=2+3 \cos \theta, y=3 \sin \theta-1
or cosθ=x23,sinθ=y+13\cos \theta=\frac{x-2}{3}, \sin \theta=\frac{y+1}{3}
Since, sin2θ+cos2θ=1\sin ^{2} \theta+\cos ^{2} \theta=1
(x23)2=(y+13)2=1\Rightarrow\left(\frac{x-2}{3}\right)^{2}=\left(\frac{y+1}{3}\right)^{2}=1
(x2)2+(y+1)2=32\Rightarrow(x-2)^{2}+(y+1)^{2}=3^{2}
\therefore Centre of circle is (2,1)(2,-1).