Solveeit Logo

Question

Physics Question on Centre of mass

The center of mass of a system of three particles of masses 1g,2g1\, g,\, 2\, g and 3g3\, g is taken as the origin of a coordinate system. The position vector of a fourth particle of mass 4g4\, g such that the center of mass of the four particle system lies at the point (1,2,3)(1,2,3) is α(i^+2j^+3k^)\alpha(\hat{ i }+2 \hat{ j }+3 \hat{ k }), where α\alpha is a constant. The value of α\alpha is

A

103\frac{10}{3}

B

52\frac{5}{2}

C

12\frac{1}{2}

D

25\frac{2}{5}

Answer

52\frac{5}{2}

Explanation

Solution

The coordinates (x,y,z)(x, y, z) of masses 1g,2g,3g1\, g,\, 2\, g,\, 3\, g and 4g4\, g are
(x1=0,y1=0,z1=0)(x2=0,y2=0,z2=0)\left(x_{1}=0, y_{1}=0, z_{1}=0\right)\left(x_{2}=0, y_{2}=0, z_{2}=0\right)
(x3=0,y3=0,z3=0)(x4=α,y4=2α,z4=3α)\left(x_{3}=0, y_{3}=0, z_{3}=0\right)\left(x_{4}=\alpha, y_{4}=2 \alpha, z_{4}=3 \alpha\right)
xCM=m1x1+m2x2+m3x3+x4x4m1+m2+m3+m4x_{ CM }=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+x_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}
xCM=4α1+2+3+4=4α10x_{ CM }= \frac{4 \alpha}{1+2+3 +4}=\frac{4 \alpha}{10}
1=4α101=\frac{4 \alpha}{10}
α=52\Rightarrow \alpha=\frac{5}{2}
yCM=m1y1+m2y2+m3y3+m4y4m1+m2+m3+m4y_{ CM }= \frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}+m_{4} y_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}
2=4×2α102= \frac{4 \times 2 \alpha}{10}
α=208=52\alpha =\frac{20}{8}=\frac{5}{2}
zCM=m1z1+m2z2+m3z3+m4z4m1+m2+m3+m4z_{ CM } =\frac{m_{1} z_{1}+m_{2} z_{2}+m_{3} z_{3}+m_{4} z_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}
3=4×3α103 =\frac{4 \times 3 \alpha}{10}
α=52\alpha =\frac{5}{2}