Solveeit Logo

Question

Question: The cell reaction in which the following reactions occur: \(F{e^{3 + }}_{\left( {{\text{aq}}} \rig...

The cell reaction in which the following reactions occur:
Fe3+(aq)+2I1(aq)Fe2+(aq)+I2(s)F{e^{3 + }}_{\left( {{\text{aq}}} \right)} + 2{I^{ - 1}}_{\left( {{\text{aq}}} \right)} \to F{e^{2 + }}_{\left( {{\text{aq}}} \right)} + {I_2}_{\left( s \right)} has Ecello=0236 V{\text{E}}_{{\text{cell}}}^o = 0 \cdot 236{\text{ V}} at 298 K{\text{298 K}}.
The equilibrium constant of the cell reaction is:
A. 669×1076 \cdot 69 \times {10^{ - 7}}
B. 769×1077 \cdot 69 \times {10^{ - 7}}
C. 969×1079 \cdot 69 \times {10^7}
D. 669×1076 \cdot 69 \times {10^7}

Explanation

Solution

Cell reaction is the overall cell reaction of an electrochemical cell. Equilibrium constant is the value of the reaction quotient at a state where no further change occurs in the chemical reaction (equilibrium state).

Complete step by step answer:
-Electric potential in volt of a cell is related by coulomb, which is a unit of measurement of current in Joule. In an electrochemical cell, we require a relation of coulomb with the charge of one mole of electrons. We get this relation by multiplying the charge on the electron by the Avogadro’s Number. This result gives a defined quantity called Faraday (F)\left( {\text{F}} \right), and it is considered as the charge transferred in an electrochemical cell.
-ΔG\Delta {\text{G}} is called free energy change, and it is the maximum amount of which can be performed in an electrochemical reaction.
-There is a relationship between the free energy change, and the cell potential of the electrochemical cell in standard state. It is given by ΔG=nFEcello ..........(1)\Delta G^\circ = - {\text{nFE}}_{{\text{cell}}}^o{\text{ }}..........{\text{(1)}},
where, ΔG\Delta G^\circ is the change in free energy in standard state,
n{\text{n}} is the number of moles transferred,
F{\text{F}} is the charge in one Faraday, which has a constant value of 96500 C{\text{96500 C}},
Ecello{\text{E}}_{{\text{cell}}}^o is the standard cell potential of the electrochemical cell.
And, the negative sign indicates the spontaneous reaction.
-Given equation is: Fe3+(aq)+2I1(aq)Fe2+(aq)+I2(s)F{e^{3 + }}_{\left( {{\text{aq}}} \right)} + 2{I^{ - 1}}_{\left( {{\text{aq}}} \right)} \to F{e^{2 + }}_{\left( {{\text{aq}}} \right)} + {I_2}_{\left( s \right)}
Ecello{\text{E}}_{{\text{cell}}}^o is given 0236 V0 \cdot 236{\text{ V}}. Then using equation (1){\text{(1)}}:
ΔG=nFEcello\Delta G^\circ = - {\text{nFE}}_{{\text{cell}}}^o
ΔG=2×0236×96500\Rightarrow \Delta G^\circ = - 2 \times 0 \cdot 236 \times 96500
ΔG=45548 J .........(2)\Rightarrow \Delta G^\circ = - 45548{\text{ J }}.........{\text{(2)}}
-Now, the equilibrium constant KC{K_{\text{C}}} is related with ΔG=lnKCRT\Delta G^\circ = - \ln {K_{\text{C}}}{\text{RT}}
where, KC{K_{\text{C}}} is the equilibrium constant,
R{\text{R}} is the Universal Gas Constant having constant value 8314 J K1mol18 \cdot 314{\text{ J }}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}
And, T{\text{T}} is the temperature which is given as 298 K{\text{298 K}}.
Or, lnKC=ΔGRT ..........(3){\text{ln}}{{\text{K}}_{\text{C}}} = \dfrac{{ - \Delta G^\circ }}{{{\text{RT}}}}{\text{ }}..........{\text{(3)}}
Putting the value of KC, R, ΔG and T{K_{\text{C}}}{\text{, R, }}\Delta {\text{G}}^\circ {\text{ and T}} in equation (3), we get,
lnKC=455488314×298\Rightarrow {\text{ln}}{{\text{K}}_{\text{C}}} = \dfrac{{45548}}{{8 \cdot 314 \times 298}}
Converting the ln to log{\text{ln to log}} , we get,
log KC=455488314×298×2303\Rightarrow {\text{log }}{{\text{K}}_{\text{C}}} = \dfrac{{45548}}{{8 \cdot 314 \times 298 \times 2 \cdot 303}}
log KC=79854\Rightarrow {\text{log }}{{\text{K}}_{\text{C}}} = {\text{7}} \cdot {\text{9854}}
KC=antilog 79854\Rightarrow {{\text{K}}_{\text{C}}} = {\text{antilog 7}} \cdot {\text{9854}}
KC=968×107\Rightarrow {{\text{K}}_{\text{C}}} = 9 \cdot 68 \times {10^7}
Hence, option (d) is the correct answer of equilibrium constant.

Note: Ecello{\text{E}}_{{\text{cell}}}^o, and Ecell{{\text{E}}_{{\text{cell}}}} are not same. Ecello{\text{E}}_{{\text{cell}}}^o is the cell potential at standard conditions, where the concentration of the reactants is 1 M{\text{1 M}}, where M{\text{M}} is the Molarity. Ecell{{\text{E}}_{{\text{cell}}}} is in non-standard conditions. Ecell{{\text{E}}_{{\text{cell}}}} can be calculated using Ecello{\text{E}}_{{\text{cell}}}^o in the Nernst equation.