Solveeit Logo

Question

Question: The cartesian equations of a line are \(6 x - 2 = 3 y + 1 = 2 z - 2\) . The vector equation of the ...

The cartesian equations of a line are 6x2=3y+1=2z26 x - 2 = 3 y + 1 = 2 z - 2 . The vector equation of the line is

A

r=(13i13j+k)+λ(i+2j+3k)r = \left( \frac { 1 } { 3 } i - \frac { 1 } { 3 } j + k \right) + \lambda ( i + 2 j + 3 k )

B
C
D

None of these

Answer

r=(13i13j+k)+λ(i+2j+3k)r = \left( \frac { 1 } { 3 } i - \frac { 1 } { 3 } j + k \right) + \lambda ( i + 2 j + 3 k )

Explanation

Solution

The given line is 6x2=3y+1=2z26 x - 2 = 3 y + 1 = 2 z - 2

x1/31=y+1/32=z13\frac { x - 1 / 3 } { 1 } = \frac { y + 1 / 3 } { 2 } = \frac { z - 1 } { 3 }

This show that the given line passes through (1/3, –1/3) and has direction ratio 1, 2, 3.

Position vector and is parallel to vector . Hence, r=(13i13j+k)+λ(i+2j+3k)r = \left( \frac { 1 } { 3 } i - \frac { 1 } { 3 } j + k \right) + \lambda ( i + 2 j + 3 k )