Solveeit Logo

Question

Mathematics Question on introduction to three dimensional geometry

The cartesian equation of the line ll when it passes through the point (x1,y1,z1)(x_1, y_1, z_1) and parallel to the vector b=ai^+bj^+ck^\vec{b}=a\hat{i}+b\hat{j}+c\hat{k}, is

A

xx1=yy1=zz1x - x_1 = y - y_1 = z - z_1

B

x+x1=y+y1=zz1x + x_1 = y + y_1 = z - z_1

C

x+x1a=y+y1b=z+z1c\frac{x+x_{1}}{a}=\frac{y+y_{1}}{b}=\frac{z+z_{1}}{c}

D

xx1a=yy1b=zz1c\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}

Answer

xx1a=yy1b=zz1c\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}

Explanation

Solution

The coordinates of the given point AA be (x1,y1,z1)(x_1, y_1, z_1) Consider the coordinates of any point PP on the line be (x,y,z)(x, y, z). The line is parallel to b=ai^+bj^+ck^\vec{b}=a\hat{i}+b\hat{j}+c\hat{k} Hence, the direction ratio of the line are aa, bb and cc. \therefore Cartesian e of a line through the point (x1,y1z1)\left(x_{1}, y_{1} z_{1}\right) and having direction ratios aa, bb and cc is xx1a=yy1b=zz1c\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}