Solveeit Logo

Question

Question: The Cartesian coordinates of the points whose polar coordinates are \(\left( { - 5, - \dfrac{\pi }{4...

The Cartesian coordinates of the points whose polar coordinates are (5,π4)\left( { - 5, - \dfrac{\pi }{4}} \right) ?
A. (52,52)\left( {\dfrac{5}{{\sqrt 2 }},\dfrac{5}{{\sqrt 2 }}} \right)
B. (52,52)\left( {\dfrac{5}{{\sqrt 2 }},\dfrac{{ - 5}}{{\sqrt 2 }}} \right)
C. (52,52)\left( {\dfrac{{ - 5}}{{\sqrt 2 }},\dfrac{5}{{\sqrt 2 }}} \right)
D. (52,52)\left( {\dfrac{{ - 5}}{{\sqrt 2 }},\dfrac{{ - 5}}{{\sqrt 2 }}} \right)

Explanation

Solution

We can compare the polar coordinates to (r,θ)\left( {r,\theta } \right) and find the values of r and θ\theta . Then we can find the x coordinate, using the equation x=rcosθx = r\cos \theta and y coordinate using the equation y=rsinθy = r\sin \theta . Then we can write x and y as ordered pairs to get the required cartesian coordinates.

Complete step by step answer:

We know that the cartesian coordinates (x,y)\left( {x,y} \right) of a point in the polar form (r,θ)\left( {r,\theta } \right) is given by the equations,
x=rcosθx = r\cos \theta …. (1)
y=rsinθy = r\sin \theta …. (2)
We have the polar coordinate given as (5,π4)\left( { - 5, - \dfrac{\pi }{4}} \right) . On comparing with (r,θ)\left( {r,\theta } \right) , we can say that,
r=5r = - 5 and θ=π4\theta = - \dfrac{\pi }{4} .
Now we can substitute these values in equation (1) to find the x coordinate. So, we get,
x=5×cos(π4)\Rightarrow x = - 5 \times \cos \left( { - \dfrac{\pi }{4}} \right)
We know that cos(x)=cosx\cos \left( { - x} \right) = \cos x . So, we get,
x=5×cos(π4)\Rightarrow x = - 5 \times \cos \left( {\dfrac{\pi }{4}} \right)
We know that cos(π4)=12\cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} . On substituting in the above equation, we get,
x=52\Rightarrow x = \dfrac{{ - 5}}{{\sqrt 2 }}
So, the x coordinate is 52\dfrac{{ - 5}}{{\sqrt 2 }}
Now we can substitute these values in equation (2) to find the y coordinate. So, we get,
y=5×sin(π4)\Rightarrow y = - 5 \times \sin \left( { - \dfrac{\pi }{4}} \right)
We know that sin(x)=sinx\sin \left( { - x} \right) = - \sin x . So, we get,
y=5×sin(π4)\Rightarrow y = 5 \times \sin \left( {\dfrac{\pi }{4}} \right)
We know that sin(π4)=12\sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} . On substituting in the above equation, we get,
y=52\Rightarrow y = \dfrac{5}{{\sqrt 2 }}
So, the y coordinate is 52\dfrac{5}{{\sqrt 2 }}
Therefore, the cartesian coordinate of the given point is (52,52)\left( {\dfrac{{ - 5}}{{\sqrt 2 }},\dfrac{5}{{\sqrt 2 }}} \right)
So, the correct answer is option C.

Note: In a Cartesian coordinate system, a point is located using its perpendicular distance from the X and Y axes. In a polar coordinate, a point is represented using the distance from the origin and the angle this shortest distance makes with the positive X axis. To convert a Cartesian coordinate to polar form, we use the following equations.
r=x2+y2r = \sqrt {{x^2} + {y^2}}
θ=tan1(yx)\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)