Solveeit Logo

Question

Question: The cartesian coordinates of the points, whose polar coordinates are \(\left( 5,-\dfrac{\pi }{4} \ri...

The cartesian coordinates of the points, whose polar coordinates are (5,π4)\left( 5,-\dfrac{\pi }{4} \right) ?
(a) (52,52)\left( \dfrac{5}{\sqrt{2}},\dfrac{5}{\sqrt{2}} \right)
(b) (52,52)\left( \dfrac{5}{\sqrt{2}},\dfrac{-5}{\sqrt{2}} \right)
(c) (52,52)\left( \dfrac{-5}{\sqrt{2}},\dfrac{5}{\sqrt{2}} \right)
(d) (52,52)\left( \dfrac{-5}{\sqrt{2}},\dfrac{-5}{\sqrt{2}} \right)

Explanation

Solution

Hint: First, we should know how to convert polar coordinates to find cartesian coordinates points given in form of (r,θ)\left( r,\theta \right) i.e. (5,π4)\left( 5,-\dfrac{\pi }{4} \right) . Then we will use the formula (x,y)=(rcosθ,rsinθ)\left( x,y \right)=\left( r\cos \theta ,r\sin \theta \right) to find the cartesian coordinate points. Also, we will use cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta and sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta when needed.

Complete step-by-step answer:
Here, we are given polar coordinates points i.e. (5,π4)\left( 5,-\dfrac{\pi }{4} \right) which is equal to (r,θ)\left( r,\theta \right) . So, from this we have to convert to cartesian coordinates points written as (x,y)\left( x,y \right) .
So, to find cartesian points we have a formula which we will use here given as (x,y)=(rcosθ,rsinθ)\left( x,y \right)=\left( r\cos \theta ,r\sin \theta \right) . Here, r=5,θ=π4r=5,\theta =-\dfrac{\pi }{4}
So, using the above formula we get
x=rcosθx=r\cos \theta
On substituting the values, we get
x=5cos(π4)x=5\cos \left( -\dfrac{\pi }{4} \right)
Now, we know that cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta and value of cos(π4)=12\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}} so, using this we get value of x as
x=5cos(π4)=52x=5\cos \left( -\dfrac{\pi }{4} \right)=\dfrac{5}{\sqrt{2}} ………………………………(1)
Similarly, using the above formula we get
y=rsinθy=r\sin \theta
On substituting the values, we get
x=5sin(π4)x=5\sin \left( -\dfrac{\pi }{4} \right)
Now, we know that sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta and value of sin(π4)=12\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}} so, using this we get value of y as
y=5sin(π4)=52y=5\sin \left( -\dfrac{\pi }{4} \right)=\dfrac{-5}{\sqrt{2}} ………………………………(2)
Thus, we get value of cartesian coordinates points as (x,y)=(52,52)\left( x,y \right)=\left( \dfrac{5}{\sqrt{2}},\dfrac{-5}{\sqrt{2}} \right) .
Hence, option (b) is the correct answer.

Note: Be careful which converting polar coordinates points to cartesian points because sometimes mistake happens when angle θ\theta is given with minus sign and in hurry students use that minus sign with function cosine although there is no impact of minus sign on cosine function i.e. cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta . So, with this minus sign whole answer will be changed and will be (52,52)\left( \dfrac{-5}{\sqrt{2}},\dfrac{-5}{\sqrt{2}} \right) which will be wrong. So, do not make these silly mistakes.