Solveeit Logo

Question

Question: The capacity of a parallel plate condenser is \(C _ { 0 }\) . If a dielectric of relative permitivi...

The capacity of a parallel plate condenser is C0C _ { 0 } . If a dielectric of relative permitivityεr\varepsilon _ { r } and thickness equal to one fourth the plate separation is placed between the plates, then its capacity becomes C. The value of CC0\frac { C } { C _ { 0 } } will be

A

5εr4εr+1\frac { 5 \varepsilon _ { r } } { 4 \varepsilon _ { r } + 1 }

B

4εr3εr+1\frac { 4 \varepsilon _ { r } } { 3 \varepsilon _ { r } + 1 }

C

3εr2εr+1\frac { 3 \varepsilon _ { r } } { 2 \varepsilon _ { r } + 1 }

D

2εrεr+1\frac { 2 \varepsilon _ { r } } { \varepsilon _ { r } + 1 }

Answer

4εr3εr+1\frac { 4 \varepsilon _ { r } } { 3 \varepsilon _ { r } + 1 }

Explanation

Solution

Initially capacitance C0=ε0AdC _ { 0 } = \frac { \varepsilon _ { 0 } A } { d } ……..(i) Finally

capacitance C=ε0Add4+d/4εrC = \frac { \varepsilon _ { 0 } A } { d - \frac { d } { 4 } + \frac { d / 4 } { \varepsilon _ { r } } } ……..(ii)

By dividing equation (ii) by equation (i) CC0=4εr3εr+1\frac { C } { C _ { 0 } } = \frac { 4 \varepsilon _ { r } } { 3 \varepsilon _ { r } + 1 }