Solveeit Logo

Question

Physics Question on Ideal Gases

The canonical partition function of an ideal gas is given by Q(T,V,N)=1N!(Vλ(T)3)NQ(T,V,N) = \frac{1}{N!} \left( \frac{V}{\lambda(T)^3} \right)^N, where TT, VV, NN, and λ(T)\lambda(T) denote temperature, volume, number of particles, and thermal de Broglie wavelength, respectively. Let kBk_B be the Boltzmann constant and μ\mu be the chemical potential. Using ln(N!)=Nln(N)N\ln(N!) = N \ln(N) - N, if the number density (NV)\left( \frac{N}{V} \right) is 2.5×10252.5 \times 10^{25} m3^{-3} at temperature TT, then eμ/(kBT)/(λ(T))3×1025e^{\mu/(k_B T)} / (\lambda(T))^3 \times 10^{-25} is ___ m3^{-3} (rounded off to one decimal place).

Answer

The correct Answer is:2.5 or 2.5 Approx