Solveeit Logo

Question

Question: The Boolean expression \( \sim \left( {p \vee q} \right) \vee \left( { \sim p \wedge q} \right)\) is...

The Boolean expression (pq)(pq) \sim \left( {p \vee q} \right) \vee \left( { \sim p \wedge q} \right) is equivalent to:
A) qq
B) q \sim q
C) p \sim p
D) pp

Explanation

Solution

Here the Boolean expression is given that is (pq)(pq) \sim \left( {p \vee q} \right) \vee \left( { \sim p \wedge q} \right). Boolean expression is a logical statement that returns either true or false. We need to draw the Boolean table.

Complete step-by-step answer:
Boolean expression is the expression of logic. It deals with variables that can have two discrete values, 00 means False (F)\left( {\text{F}} \right) and 11 means True (T)\left( {\text{T}} \right). So here, Boolean expression is given
(pq)(pq)\sim \left( {p \vee q} \right) \vee \left( { \sim p \wedge q} \right).
So first find out (pq) \sim \left( {p \vee q} \right).
Now, let us draw the table.
Here the symbol \vee is of OR and we follow additional property. If pp is true, then it is treated as 11 and if qq is false, it is treated as 00. Then, pq=p+q=1+0=1p \vee q = p + q = 1 + 0 = 1.

ppqqpqp \vee q(pq) \sim \left( {p \vee q} \right)
T{\text{T}}T{\text{T}}T{\text{T}}F{\text{F}}
T{\text{T}}F{\text{F}}T{\text{T}}F{\text{F}}
F{\text{F}}T{\text{T}}T{\text{T}}F{\text{F}}
F{\text{F}}F{\text{F}}F{\text{F}}T{\text{T}}

\sim is the negation mark. For example, if we get pqp \vee q as true , then (pq) \sim \left( {p \vee q} \right) must be false.
Now let us find (pq)\left( { \sim p \wedge q} \right).
Here \wedge is the symbol of AND and we follow multiplication property.

ppp \sim pqqpqp \wedge qpq \sim p \wedge q
T{\text{T}}F{\text{F}}T{\text{T}}T{\text{T}}F{\text{F}}
T{\text{T}}F{\text{F}}F{\text{F}}F{\text{F}}F{\text{F}}
F{\text{F}}T{\text{T}}T{\text{T}}F{\text{F}}T{\text{T}}
F{\text{F}}T{\text{T}}F{\text{F}}F{\text{F}}F{\text{F}}

Now we have to find (pq)(pq) \sim \left( {p \vee q} \right) \vee \left( { \sim p \wedge q} \right)
Now let us arrange the table

ppqq(pq) \sim \left( {p \vee q} \right)(pq)\left( { \sim p \wedge q} \right)(pq)(pq) \sim \left( {p \vee q} \right) \vee \left( { \sim p \wedge q} \right)
T{\text{T}}T{\text{T}}F{\text{F}}F{\text{F}}F{\text{F}}
T{\text{T}}F{\text{F}}F{\text{F}}F{\text{F}}F{\text{F}}
F{\text{F}}T{\text{T}}F{\text{F}}T{\text{T}}T{\text{T}}
F{\text{F}}F{\text{F}}T{\text{T}}F{\text{F}}T{\text{T}}

Here we got just opposite of pp. So the answer is p \sim p.

So option C is the correct answer.

Note: If we write pqp \wedge q, then it is an AND operator but if (pq) \sim \left( {p \wedge q} \right)is given, then it becomes a NAND operator. Now, if we write pqp \vee q, then it is an OR operator and similarly, if (pq) \sim \left( {p \vee q} \right)is given, then it becomes a NOR operator.