Question
Question: The bond dissociation enthalpy of $X_2 \Delta H_{bond}$ calculated from the given data is _______ $k...
The bond dissociation enthalpy of X2ΔHbond calculated from the given data is _______ kJmol−1. (Nearest integer) M+X−(s)⟶M+(g)+X−(g)ΔHlattice∗=800kJmol−1 M(s)⟶M(g)ΔHsub∘=100kJmol−1 M(g)⟶M+(g)+e−(g)ΔHi=500kJmol−1 X(g)+e−(g)⟶X−(g)ΔHeg∗=−300kJmol−1 M(s)+21X2(g)⟶M+X−(s)ΔHf∘=−400kJmol−1
[Given: M+X− is a pure ionic compound and X forms a diatomic molecule X2 in gaseous state]
Answer
200
Explanation
Solution
-
Write the Born‐Haber cycle for the formation of MX:
M(s)M(g)21X2(g)X(g)+e−M+(g)+X−(g)→M(g)(ΔHsub=+100)→M+(g)+e−(ΔHi=+500)→X(g)(ΔH=21ΔHbond)→X−(g)(ΔHeg∗=−300)→MX(s)(ΔHlattice∗=−800) -
The overall reaction is:
M(s)+21X2(g)→MX(s)(ΔHf=−400) -
Adding the steps:
100+500+21ΔHbond−300−800=−400Simplify:
(100+500−300−800)+21ΔHbond=−400(−500)+21ΔHbond=−400 -
Solve for ΔHbond:
21ΔHbond=−400+500=100⇒ΔHbond=200kJ/mol