Solveeit Logo

Question

Question: The boiling point of benzene is353.3 K. When 1.80 $g$ of a non-volatile solute was dissolved in 90 $...

The boiling point of benzene is353.3 K. When 1.80 gg of a non-volatile solute was dissolved in 90 gg of benzene, the boiling point is raised to 354.1 Κ given that KbK_b for benzene is 2.52 K kg mol1^{-1}, the molar mass of the solute is

A

15 g mol1^{-1}

B

20 g mol1^{-1}

C

25 g mol1^{-1}

D

63 g mol1^{-1}

Answer

63 g mol1^{-1}

Explanation

Solution

To find the molar mass of the solute, we use the boiling point elevation formula:

ΔTb=Kbm\Delta T_b = K_b \cdot m

Where:

  • ΔTb\Delta T_b is the boiling point elevation.
  • KbK_b is the ebullioscopic constant of the solvent.
  • mm is the molality of the solution.

First, calculate ΔTb\Delta T_b:

ΔTb=Tboiling,solutionTboiling,puresolvent=354.1K353.3K=0.8K\Delta T_b = T_{boiling, solution} - T_{boiling, pure solvent} = 354.1 K - 353.3 K = 0.8 K

Next, we know that molality (mm) can be expressed as:

m=moles of solutekg of solvent=w2/M2w1/1000m = \frac{\text{moles of solute}}{\text{kg of solvent}} = \frac{w_2 / M_2}{w_1 / 1000}

Where:

  • w2w_2 is the mass of the solute (1.80 g).
  • M2M_2 is the molar mass of the solute (what we want to find).
  • w1w_1 is the mass of the solvent (90 g).

So, we can rewrite the boiling point elevation formula as:

ΔTb=Kbw21000M2w1\Delta T_b = K_b \cdot \frac{w_2 \cdot 1000}{M_2 \cdot w_1}

Now, rearrange to solve for M2M_2:

M2=Kbw21000ΔTbw1M_2 = \frac{K_b \cdot w_2 \cdot 1000}{\Delta T_b \cdot w_1}

Plug in the given values:

M2=2.52 K kg mol11.80 g10000.8 K90 g=2.521.8010000.890=453672=63 g/molM_2 = \frac{2.52 \text{ K kg mol}^{-1} \cdot 1.80 \text{ g} \cdot 1000}{0.8 \text{ K} \cdot 90 \text{ g}} = \frac{2.52 \cdot 1.80 \cdot 1000}{0.8 \cdot 90} = \frac{4536}{72} = 63 \text{ g/mol}

Therefore, the molar mass of the solute is 63 g/mol.