Solveeit Logo

Question

Physics Question on Oscillations

The bob of simple pendulum having length l, is displaced from mean position to an angular position q with respect to vertical. If it is released, then velocity of bob at equilibrium position

A

2gl(1cosθ)\sqrt{ 2 gl ( 1 - \cos \, \theta)}

B

2gl(1+cosθ)\sqrt{ 2 gl ( 1 + \cos \, \theta)}

C

2glcosθ\sqrt{ 2 gl \cos \, \theta}

D

2gl \sqrt { 2gl}

Answer

2gl(1cosθ)\sqrt{ 2 gl ( 1 - \cos \, \theta)}

Explanation

Solution

In ,OAC,cosθ=A/l \triangle, OAC, \, cos\,\theta = A/l
or, OA = lcosθ l \,cos\, \theta
AB=l(1cosθ)=h\therefore AB = l \, (1 - cos \,\theta) = h
At point, C the velocity of bob
= 0.
The vertical acceleration = g
v2=2gh\therefore v^2 = 2 gh or, v=2gl(1cosθ) v = \sqrt{ 2gl (1 - cos\, \theta)}.