Solveeit Logo

Question

Question: The binomial coefficient of the third term of the end in the expansion \({\left( {{y^{\dfrac{2}{3}}}...

The binomial coefficient of the third term of the end in the expansion (y23+x54)n{\left( {{y^{\dfrac{2}{3}}} + {x^{\dfrac{5}{4}}}} \right)^n} is 91. Find the ninth term of the expansion.

Explanation

Solution

First we’ll find the value of n using the binomial coefficient of the third term of the end which is given 91. After finding the value of n we’ll easily get the value of the ninth term using the formula of (r+1)th{(r + 1)^{th}} term of the expansion of (a+b)n{\left( {a + b} \right)^n} i.e. given by Tr+1=nCranrbr{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}

Complete step by step answer:

Given data: In the expansion of (y23+x54)n{\left( {{y^{\dfrac{2}{3}}} + {x^{\dfrac{5}{4}}}} \right)^n}, the binomial coefficient of the third term from last is 91.
We know that in the expansion if (a+b)n{\left( {a + b} \right)^n},
Number of terms=n+1
The formula for (r+1)th{(r + 1)^{th}} term i.e.(Tr+1{T_{r + 1}}) is given by
Tr+1=nCranrbr{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}
Since total terms in the expansion of(y23+x54)n{\left( {{y^{\dfrac{2}{3}}} + {x^{\dfrac{5}{4}}}} \right)^n} will be (n+1)
Therefore, the third term from the last will be (n+13+1)th{\left( {n + 1 - 3 + 1} \right)^{th}} i.e. (n1)th{\left( {n - 1} \right)^{th}}
It is given that the binomial coefficient (n1)th{\left( {n - 1} \right)^{th}} is equal to 91,
Since Tn1=nCn2(y23)nn+2(x54)n2{T_{n - 1}} = {}^n{C_{n - 2}}{\left( {{y^{\dfrac{2}{3}}}} \right)^{n - n + 2}}{\left( {{x^{\dfrac{5}{4}}}} \right)^{n - 2}}
Therefore, the binomial coefficient of Tn1=nCn2{T_{n - 1}} = {}^n{C_{n - 2}}
nCn2=91\therefore {}^n{C_{n - 2}} = 91
Using nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} ,
n!(nn+2)!(n2)!=91\Rightarrow \dfrac{{n!}}{{\left( {n - n + 2} \right)!\left( {n - 2} \right)!}} = 91
On simplifying we get,
n!(2)!(n2)!=91\Rightarrow \dfrac{{n!}}{{\left( 2 \right)!\left( {n - 2} \right)!}} = 91
As, 2!=22! = 2, we get,
n!2(n2)!=91\Rightarrow \dfrac{{n!}}{{2\left( {n - 2} \right)!}} = 91
On multiplying the entire equation with 2 we get,
n!(n2)!=91(2)\Rightarrow \dfrac{{n!}}{{\left( {n - 2} \right)!}} = 91(2)
Using n!=n(n1)(n2)!n! = n(n - 1)(n - 2)!, and factorizing the right side we get,
n(n1)(n2)!(n2)!=13(7)(2)\Rightarrow \dfrac{{n(n - 1)(n - 2)!}}{{\left( {n - 2} \right)!}} = 13(7)(2)
On cancelling common terms we get,
n(n1)=(14)13\Rightarrow n(n - 1) = (14)13
On comparing the left-hand side and right-hand side of the above equation, we can say that,
n=14n = 14
Now, using Tr+1=nCranrbr{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}
Substituting r=8, we’ll get the required term i.e. T9{T_9}
T9=14C8(y23)148(x54)8\therefore {T_9} = {}^{14}{C_8}{\left( {{y^{\dfrac{2}{3}}}} \right)^{14 - 8}}{\left( {{x^{\dfrac{5}{4}}}} \right)^8}
On simplifying we get,
=14C8(y)6(23)(x)8(54)= {}^{14}{C_8}{\left( y \right)^{6\left( {\dfrac{2}{3}} \right)}}{\left( x \right)^{8\left( {\dfrac{5}{4}} \right)}}
=14C8y4x10= {}^{14}{C_8}{y^4}{x^{10}}
Using nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} , we get
T9=14!8!(148)!y4x10\therefore {T_9} = \dfrac{{14!}}{{8!\left( {14 - 8} \right)!}}{y^4}{x^{10}}
=14!8!6!y4x10= \dfrac{{14!}}{{8!6!}}{y^4}{x^{10}}
Now, expanding the value of 14! ,
=14×13×12×11×10×9×8!8!6!y4x10= \dfrac{{14 \times 13 \times 12 \times 11 \times 10 \times 9 \times 8!}}{{8!6!}}{y^4}{x^{10}}
On cancelling common terms we get,
=14×13×12×11×10×96!y4x10= \dfrac{{14 \times 13 \times 12 \times 11 \times 10 \times 9}}{{6!}}{y^4}{x^{10}}
Expanding 6!, we get,
=14×13×12×11×10×96×5×4×3×2×1y4x10= \dfrac{{14 \times 13 \times 12 \times 11 \times 10 \times 9}}{{6 \times 5 \times 4 \times 3 \times 2 \times 1}}{y^4}{x^{10}}
On simplifying we get,
=3003y4x10= 3003{y^4}{x^{10}}
Therefore the ninth term is 3003y4x103003{y^4}{x^{10}}

Note: In the expansion of a binomial function let say (a+b)n{\left( {a + b} \right)^n}, we can say that the binomial coefficient or rth{r^{th}} is given by nCr1{}^n{C_{r - 1}} . Therefore, according to the given data, we can say that the binomial coefficient of the third term from last is 91 i.e. nCn2=91{}^n{C_{n - 2}} = 91that is equivalent to the above solution.