Solveeit Logo

Question

Physics Question on Nuclear physics

The binding energy of a certain nucleus is 18×108J18 \times 10^8 \, \text{J}. How much is the difference between the total mass of all the nucleons and the nuclear mass of the given nucleus?

A

0.2μg0.2 \, \mu \text{g}

B

20μg20 \, \mu \text{g}

C

2μg2 \, \mu \text{g}

D

10μg10 \, \mu \text{g}

Answer

20μg20 \, \mu \text{g}

Explanation

Solution

Using the mass-energy equivalence E=Δmc2E = \Delta m c^2, the mass defect Δm\Delta m is calculated as:
Δm=Ec2.\Delta m = \frac{E}{c^2}.
Substituting the values:
E=18×108J,c=3×108m/s,E = 18 \times 10^8 \, \text{J}, \, c = 3 \times 10^8 \, \text{m/s},
Δm=18×108(3×108)2=18×1089×1016=2×108kg.\Delta m = \frac{18 \times 10^8}{(3 \times 10^8)^2} = \frac{18 \times 10^8}{9 \times 10^{16}} = 2 \times 10^{-8} \, \text{kg}.
Converting Δm\Delta m to micrograms (μg\mu g):
Δm=2×108kg=20μg.\Delta m = 2 \times 10^{-8} \, \text{kg} = 20 \, \mu g.
Final Answer: 20 μg\mu g