Solveeit Logo

Question

Question: The biggest among \(\left( {\sin 1 + \cos 1} \right),\left( {\sqrt {\sin 1} + \sqrt {\cos 1} } \righ...

The biggest among (sin1+cos1),(sin1+cos1),(sin1cos1):\left( {\sin 1 + \cos 1} \right),\left( {\sqrt {\sin 1} + \sqrt {\cos 1} } \right),\left( {\sin 1 - \cos 1} \right):
A) (sin1+cos1)\left( {\sin 1 + \cos 1} \right)
B) (sin1+cos1)\left( {\sqrt {\sin 1} + \sqrt {\cos 1} } \right)
C) (sin1cos1)\left( {\sin 1 - \cos 1} \right)
D) None of these.

Explanation

Solution

In trigonometric function, tanθ\tan \theta ,
As angle approaches to zero ( θ0\theta \to 0) , tangent of angle approached to infinity (tanθ\tan \theta \to \infty ).
tan1\Rightarrow \tan 1must be a larger value (atleast greater than 1); use this fact to find inequality between sin1 & cos1\sin 1{\text{ }}\& {\text{ }}\cos 1.
The Square of numbers for greater than 0 and less than 1, is smaller than the number.
For example: Square of 0.6
i.e. (0.6)2=0.36\mathop {\left( {0.6} \right)}\nolimits^2 = 0.36
0.36 < 0.6
The range is a set of all output values of function as independent variables varies thoughout the domain.
The domain is a set of all possible values on which function is defined.
For trigonometric function y=sinxy = \sin x , independent variable is x.
The domain is the set of all real numbers.
Range of trigonometric function sinx=[1,1] and cosx=[1,1]\sin x = \left[ { - 1,1} \right]{\text{ and }}\cos x = \left[ { - 1,1} \right]

(sinx)2<sinx and (cosx)2<cosx  \Rightarrow \mathop {\left( {\sin x} \right)}\nolimits^2 < \sin x \\\ {\text{and }}\mathop {\left( {\cos x} \right)}\nolimits^2 < \cos x \\\

Use above mention property to find the inequality between sin1 & sin1\sqrt {\sin 1} {\text{ }}\& {\text{ }}\sin 1.

Complete step by step solution:
Step 1: Drawing a graph of the tangent function.

We know that tan1>1\tan 1 > 1
It is known, tan1=sin1cos1\tan 1 = \dfrac{{\sin 1}}{{\cos 1}}
sin1cos1>1\Rightarrow \dfrac{{\sin 1}}{{\cos 1}} > 1
sin1>cos1\Rightarrow \sin 1 > \cos 1 …… (1)
when smaller number is substracting form larger number, then result is real positive number.
sin1cos1>0\Rightarrow \sin 1 - \cos 1 > 0 (from (1))
Hence, sin1\sin 1is positive (or greater than 0) and cos1\cos 1is also positive (or greater than 0).
sin1>0; cos1 > 0\Rightarrow \sin 1 > 0;{\text{ cos1 > 0}}
The Sum of two positive numbers is greater than their difference.
(sin1+cos1)>(sin1cos1)\Rightarrow \left( {\sin 1 + \cos 1} \right) > \left( {\sin 1 - \cos 1} \right) …… (2)
Step 2: Draw graph of the sine function

Range of sine function: sinx=[1,1] \sin x = \left[ { - 1,1} \right]{\text{ }}
sin1<1\Rightarrow \sin 1 < 1
sin1>sin1\sqrt {\sin 1} > \sin 1
Hence, for values less than ‘1’, higher power gives lower values
Example: For (0<x<1)\left( {0 < x < 1} \right)
x>x2>x3>x4>x5.....x > \mathop x\nolimits^2 > \mathop x\nolimits^3 > \mathop x\nolimits^4 > \mathop x\nolimits^5 .....
Similarly, sin1>sin21\sin 1 > {\sin ^2}1
sin1<sin1 &   cos1<cos1  \Rightarrow \sin 1 < \sqrt {\sin 1} \\\ \& \;{\text{ }}\cos 1 < \sqrt {\cos 1} \\\
Thus, (sin1sin1)\left( {\sqrt {\sin 1} - \sin 1} \right) and (cos1cos1)\left( {\sqrt {\cos 1} - \cos 1} \right) are real positive number.
Then, (sin1sin1)+(cos1cos1)>0\left( {\sqrt {\sin 1} - \sin 1} \right) + \left( {\sqrt {\cos 1} - \cos 1} \right) > 0
(sin1+cos1sin1cos1)>0\Rightarrow \left( {\sqrt {\sin 1} + \sqrt {\cos 1} - \sin 1 - \cos 1} \right) > 0
On transferring number to the other side of the inequality, a sign of the number changes.
(+sin1+cos1)>(sin1+cos1)\Rightarrow - \left( { + \sin 1 + \cos 1} \right) > - \left( {\sqrt {\sin 1} + \sqrt {\cos 1} } \right)
Multiplying by a minus sign on both sides. The inequality reverses.
(sin1+cos1)<(sin1+cos1)\Rightarrow \left( {\sin 1 + \cos 1} \right) < \left( {\sqrt {\sin 1} + \sqrt {\cos 1} } \right) …… (3)
From (2) and (3)
(sin1cos1)<(sin1+cos1)<(sin1+cos1)\left( {\sin 1 - \cos 1} \right) < \left( {\sin 1 + \cos 1} \right) < \left( {\sqrt {\sin 1} + \sqrt {\cos 1} } \right)
Final answer: Among (sin1+cos1),(sin1+cos1),(sin1cos1)\left( {\sin 1 + \cos 1} \right),\left( {\sqrt {\sin 1} + \sqrt {\cos 1} } \right),\left( {\sin 1 - \cos 1} \right); (sin1+cos1)\left( {\sqrt {\sin 1} + \sqrt {\cos 1} } \right)is the biggest.

\therefore The correct option is (B).

Note:
The range of a function is defined as the set of all values of the function defined on its domain.
Range and domain of some trigonometric functions are given below:

Trigonometric functionDomainRange
Sine(,+)\left( { - \infty , + \infty } \right)[-1,1]
Cosine(,+)\left( { - \infty , + \infty } \right)[-1,1]
TangentAll real numbers except π2+nπ\dfrac{\pi }{2} + n\pi (,+)\left( { - \infty , + \infty } \right)
CosecantAll real numbers except nπn\pi (,1][1,+)\left( { - \infty , - 1} \right] \cup \left[ {1, + \infty } \right)
SecantAll real numbers except π2+nπ\dfrac{\pi }{2} + n\pi (,1][1,+)\left( { - \infty , - 1} \right] \cup \left[ {1, + \infty } \right)
CotangentAll real numbers except nπn\pi (,+)\left( { - \infty , + \infty } \right)