Solveeit Logo

Question

Question: The average weight of a class of \({\text{24}}\) students is \({\text{35 Kg}}\). If the weight of th...

The average weight of a class of 24{\text{24}} students is 35 Kg{\text{35 Kg}}. If the weight of the teacher is included the average rises by 400g{\text{400g}}. The weight of the teacher is ­­­­­.
(A) 50 Kg\left( {\text{A}} \right){\text{ 50 Kg}}
(B) 55 Kg\left( {\text{B}} \right){\text{ 55 Kg}}
(C) 45 Kg\left( {\text{C}} \right){\text{ 45 Kg}}
(D) 53 Kg\left( {\text{D}} \right){\text{ 53 Kg}}

Explanation

Solution

This question is based on average concepts.
Here given that the average weight of a class of 24{\text{24}} students.
Suppose the weight of the teacher is included, the average rises by 400g{\text{400g}}.
Now we want to convert grams into kilograms using the formula and then we find the weight of the teacher.
Finally we get the required answer.

Formula used: Average=sum of these data valuesnumber of data values{\text{Average=}}\dfrac{{{\text{sum of these data values}}}}{{{\text{number of data values}}}}

Complete step-by-step solution:
We know that, average = sum of all weight of 24 studentsnumber of students\dfrac{\text{sum of all weight of 24 students}}{{number{\text{ }}of{\text{ }}students}}
Let sum of all weight of 24{\text{24}} students be denoted by w1+w2+...+w24{\operatorname{w} _1} + {\operatorname{w} _2} + ... + {\operatorname{w} _{24}}
Therefore average = w1+w2+...+w2424\dfrac{{{\operatorname{w} _1} + {\operatorname{w} _2} + ... + {\operatorname{w} _{24}}}}{{24}}
Given that the average weight of 2424 students is 35 Kg{\text{35 Kg}}.
Thus w1+w2+...+w2424=35 Kg\dfrac{{{\operatorname{w} _1} + {\operatorname{w} _2} + ... + {\operatorname{w} _{24}}}}{{24}} = {\text{35 Kg}}
On cross multiplying we get,
 w1+w2+...+w24=35×24\Rightarrow {\text{ }}{\operatorname{w} _1} + {\operatorname{w} _2} + ... + {\operatorname{w} _{24}} = {{35 \times 24}}
On multiplying we get,
840\Rightarrow {\text{840}}
Let the teacher’s weight be w25{\operatorname{w} _{25}}.
Then the number of person = 24 + 1 = 25{\text{24 + 1 = 25}}
If the weight of the teacher be included the average rises by 400g{\text{400g}}.
Then, new average = w1 + w2 + ... + w24 + w2525\dfrac{{{{\text{w}}_{\text{1}}}{\text{ + }}{{\text{w}}_{\text{2}}}{\text{ + }}...{\text{ + }}{{\text{w}}_{{\text{24}}}}{\text{ + }}{{\text{w}}_{{\text{25}}}}}}{{{\text{25}}}}= 35 Kg + 400 g{\text{35 Kg + 400 g}}
Now we convert gram in to kilogram
We know that, 1000 g = 1Kg{\text{1000 g = 1Kg}}
 100 g = 0.1 Kg\Rightarrow {\text{ 100 g = 0}}{\text{.1 Kg}}
Multiply 44 on both side we get,
 400 g = 0.1×4=0.4 Kg\Rightarrow {\text{ 400 g = 0}}{{.1 \times 4 = 0}}{\text{.4 Kg}}
Therefore, New average = w1 + w2 + ... + w24 + w2525\dfrac{{{{\text{w}}_{\text{1}}}{\text{ + }}{{\text{w}}_{\text{2}}}{\text{ + }}...{\text{ + }}{{\text{w}}_{{\text{24}}}}{\text{ + }}{{\text{w}}_{{\text{25}}}}}}{{{\text{25}}}}= 35 Kg + 0.4 Kg{\text{35 Kg + 0}}{\text{.4 Kg}} = 35.4 Kg{\text{35}}{\text{.4 Kg}}
 w1 + w2 + ... + w24 + w25\Rightarrow {\text{ }}{{\text{w}}_{\text{1}}}{\text{ + }}{{\text{w}}_{\text{2}}}{\text{ + }}...{\text{ + }}{{\text{w}}_{{\text{24}}}}{\text{ + }}{{\text{w}}_{{\text{25}}}}= 35.4×25=885{\text{35}}{{.4 \times 25 = 885}}
Now we find out weight of the teacher
That is we find w25{\operatorname{w} _{25}}
 840 + w25 = 885\Rightarrow {\text{ 840 + }}{{\text{w}}_{{\text{25}}}}{\text{ = 885}}
 w25 = 885 - 840 = 45 Kg\Rightarrow {\text{ }}{{\text{w}}_{{\text{25}}}}{\text{ = 885 - 840 = 45 Kg}}
Therefore the weight of the teacher is 45 Kg{\text{45 Kg}}

Hence the correct option is (C)\left( {\text{C}} \right).

Note: Must be careful to convert gram into kilogram.
A kilogram is one thousand grams.
This means that to get kilogram from grams, you just need to divide the number of grams by 10001000.
Labeling your answer with the proper units is important.
Suppose we get grams form kilogram, you just need to multiply the number of kilograms by 10001000