Solveeit Logo

Question

Question: The average value of current given by \( {\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\...

The average value of current given by i = Im sin ωt{\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}}, from t = π2ω{\text{t = }}\dfrac{\pi }{{2\omega }} to t = 3π2ω{\text{t = }}\dfrac{{3\pi }}{{2\omega }} is how many times of Im{{\text{I}}_{\text{m}}}?

Explanation

Solution

To find the number of times the average value becomes with respect to the given time interval, we calculate the integral of the general form of an average of a function in the interval and compare it to Im{{\text{I}}_{\text{m}}}.

Complete step by step answer:
We integrate the sine function and substitute the intervals given in the above. The integration of a sine function is given by, sin x = - cos x.
Given data,
i = Im sin ωt{\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}}
Time interval t = π2ω{\text{t = }}\dfrac{\pi }{{2\omega }} to t = 3π2ω{\text{t = }}\dfrac{{3\pi }}{{2\omega }} .
The average value of a function ‘f’ in a certain time interval from ‘a’ to ‘b’ is given by the formula –
favg=abfdtabdt{{\text{f}}_{{\text{avg}}}} = \dfrac{{\int\limits_{\text{a}}^{\text{b}} {{\text{fdt}}} }}{{\int\limits_{\text{a}}^{\text{b}} {{\text{dt}}} }} .
Here we are supposed to find the average value of current ‘i’ from a time interval t = π2ω{\text{t = }}\dfrac{\pi }{{2\omega }} to t = 3π2ω{\text{t = }}\dfrac{{3\pi }}{{2\omega }}

iavg = π2ω3π2ωidtπ2ω3π2ωdt \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{idt}}} }}{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{dt}}} }}{\text{ }}
Given value of current is i = Im sin ωt{\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}} , we substitute this in the above equation we get
iavg = π2ω3π2ω(Im sin ωt)dtπ2ω3π2ωdt \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {\left( {{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}}} \right){\text{dt}}} }}{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{dt}}} }}{\text{ }}
iavg = Im×[cosωt]π2ω3π2ωω[t]π2ω3π2ω \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{{{\text{I}}_{\text{m}}} \times \dfrac{{\left[ { - {\text{cos}}\omega {\text{t}}} \right]_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}}}}{\omega }}}{{\left[ {\text{t}} \right]_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}}}}{\text{ }}
iavg = Im×(1)×[cosω×3π2ωcosω×π2ω]ω[3π2ωπ2ω] \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{{{\text{I}}_{\text{m}}} \times \dfrac{{\left( { - 1} \right) \times \left[ {{\text{cos}}\omega \times \dfrac{{3\pi }}{{2\omega }} - {\text{cos}}\omega \times \dfrac{\pi }{{2\omega }}} \right]}}{\omega }}}{{\left[ {\dfrac{{3\pi }}{{2\omega }} - \dfrac{\pi }{{2\omega }}} \right]}}{\text{ }}
iavg = - Imπ×[cos3π2cosπ2] \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = - }}\dfrac{{{{\text{I}}_{\text{m}}}}}{\pi } \times \left[ {{\text{cos}}\dfrac{{3\pi }}{2} - {\text{cos}}\dfrac{\pi }{2}} \right]{\text{ }}
iavg = - Imπ×[00] \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = - }}\dfrac{{{{\text{I}}_{\text{m}}}}}{\pi } \times \left[ {0 - 0} \right]{\text{ }}
iavg = 0\Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = 0}}
Hence the average value of current is zero times of Im{{\text{I}}_{\text{m}}} .

Note:
In order to answer this type of question the key is to know the general formula of average value of a function using integration.
Integral of a function of the form abdx\int\limits_{\text{a}}^{\text{b}} {{\text{dx}}} is given by [x]ab=[b - a]\left[ {\text{x}} \right]_{\text{a}}^{\text{b}} = \left[ {{\text{b - a}}} \right] .
Integral of a function of the form pqsin(bx) dx\int\limits_{\text{p}}^{\text{q}} {{\text{sin}}\left( {{\text{bx}}} \right)} {\text{ dx}} is given by [ - cosbxb]pq\left[ {\dfrac{{{\text{ - cosbx}}}}{{\text{b}}}} \right]_{\text{p}}^{\text{q}} .
Also the values of cos3π2 and cosπ2{\text{cos}}\dfrac{{3\pi }}{2}{\text{ and cos}}\dfrac{\pi }{2} is equal to zero and is obtained from the trigonometric table of cosine function.