Solveeit Logo

Question

Chemistry Question on Spontaneity

The average translational energy and the rms speed of molecules in a sample of oxygen gas at 300 K are 6.21×10216.21 \times 10^{-21} J and 484 m/s respectively. The corresponding values at 600 K are nearly (assuming ideal gas behaviour)

A

12.42 ×1021\times 10^{-21} J, 968 m/s

B

8.78 ×1021\times 10^{-21} J, 684 m/s

C

6.21 ×1021\times 10^{-21} J, 968 m/s

D

12.42 ×1021\times 10^{-21} J, 684 m/s

Answer

12.42 ×1021\times 10^{-21} J, 684 m/s

Explanation

Solution

The average translational KE = 32kT\frac{3}{2}kT which is directly proportional to T, while rms speed of molecules is given by

vrms=3RTMi.e.,vrms=T \, \, \, \, \, \, \, \, \, v_{rms}=\sqrt{\frac{3RT}{M}} \, i.e.,v_{rms} \, = \sqrt T
When temperature of gas is increased from 300 K to 600 K
(i.e. 2 times), the average translational KE will increase to \2 times and rms speed to 2\sqrt 2 or 1.414 times.
\therefore \, \, \, Average translational KE =2×6.21×1021J2 \times 6.21 \, \times 10^{-21} J
=12.42×1021J\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =12.42 \times 10^{-21} J
and vrms=(1.414)(484)m/s\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, v_{rms}=(1.414)(484)m/s
=684m/s\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =684 m/s