Solveeit Logo

Question

Question: The average translational energy and the r.m.s. speed of molecules in a sample of oxygen gas at 300 ...

The average translational energy and the r.m.s. speed of molecules in a sample of oxygen gas at 300 K are 6.21×1021J6.21 \times 10^{- 21}J and 484 m/s respectively. The corresponding values at 600 K are nearly (assuming ideal gas behaviour)

A

(a) 12.42×1021J,6mu968m/s12.42 \times 10^{21}J,\mspace{6mu} 968m/s

B

8.78×1021J,6mu684m/s8.78 \times 10^{21}J,\mspace{6mu} 684m/s

C

6.21×1021J,968m/s6.21 \times 10^{21}J,968m/s

D

12.42×1021J,6mu684m/s12.42 \times 10^{21}J,\mspace{6mu} 684m/s

Answer

12.42×1021J,6mu684m/s12.42 \times 10^{21}J,\mspace{6mu} 684m/s

Explanation

Solution

We know that average translational K.E.K.E. of a molecule =32kT= \frac{3}{2}kT At300K,300K, average K.E.=6.21×1021JK.E. = 6.21 \times 10^{- 21}J

At600K,600K, average K.E=2×(6.21×1021)K.E = 2 \times (6.21 \times 10^{- 21})

=12.42×1021J= 12.42 \times 10^{- 21}J

We know that vrms=3kTmv_{rms} = \sqrt{\frac{3kT}{m}}At vrms=484m/sv_{rms} = 484m/s

At vrms=2×484=684m/sv_{rms}^{'} = \sqrt{2} \times 484 = 684m/s