Solveeit Logo

Question

Mathematics Question on chords

The average length of all vertical chords of hyperbola x2a2y2b2=1\frac{x^2}{a^2}-\frac{y^2}{b^2}=1, ax2aa \leq x\leq 2a, is

A

b{232\sqrt3-ln(2+32+\sqrt3)}

B

b{323\sqrt2+ln(3+23+\sqrt2)}

C

b{252\sqrt5-ln(2+52+\sqrt5)}

D

b{525\sqrt2+ln(5+25+\sqrt2)}

Answer

b{232\sqrt3-ln(2+32+\sqrt3)}

Explanation

Solution

Given :
Equation of the hyperbola : x2a2y2b2=1.\frac{x^2}{a^2}-\frac{y^2}{b^2}=1.
Given a value of x within the interval [a, 2a], the corresponding y values can be determined using the equation of the hyperbola as follows :
x2a2y2b2=1.\frac{x^2}{a^2}-\frac{y^2}{b^2}=1.
Now, Solving for y, we get :
y=±bx2a21y=±b\sqrt{\frac{x^2}{a^2}-1}.
The length of a vertical chord at a specific x value is found by calculating the difference between the corresponding y values, resulting in :
Length of the Chord = 2bx2a212b\sqrt{\frac{x^2}{a^2}-1}
To find the average length of all vertical chords from x=a to x=2ax = a \ to\ x = 2a, we compute the definite integral of the chord length function over this interval and divide by the interval's length :
Average length of chord = 12aaa2ax2a21dx\frac{1}{2a-a}\int\limits_a^{2a}\sqrt{\frac{x^2}{a^2}-1}dx
By Simplifying this, we get :
Average length of chord = 2baa2ax2a21dx\frac{2b}{a}\int\limits_a^{2a}\sqrt{\frac{x^2}{a^2}-1}dx
Average length of a vertical chord from a to 2aa\ to\ 2a :
2a2aydxa2dx=2a2abax2a2dx(x)a2a⇒\frac{2\int\limits_a^{2a}ydx}{\int\limits_a^2dx}=\frac{2\int\limits_a^{2a}\frac{b}{a}\sqrt{x^2-a^2}dx}{(x)^{2a}_a}
2baa2ax2a2dxa=2ba202ax2a2dx⇒\frac{\frac{2b}{a}\int\limits_a^{2a}\sqrt{x^2-a^2}dx}{a}=\frac{2b}{a^2}\int\limits_0^{2a}\sqrt{x^2-a^2}dx
=2ba2(x3x2a2a22lnx+x2a2)a2a=\frac{2b}{a^2}\left(\frac{x}{3}\sqrt{x^2-a^2}-\frac{a^2}{2}\text{ln}|x+\sqrt{x^2-a^2}|\right)^{2a}_a
=2ba2[(2a)4a2a22a2ln2a+4a2a22aa2a22+a2lna+a2a22]=\frac{2b}{a^2}\left[\frac{(2a)\sqrt{4a^2-a^2}}{2}-\frac{a^2\text{ln}|2a+\sqrt{4a^2-a^2}|}{2}-\frac{a\sqrt{a^2-a^2}}{2}+\frac{a^2\text{ln}|a+\sqrt{a^2-a^2}|}{2}\right]
=2ba2[3a2a2ln(2+3)a2+a2lna2]=\frac{2b}{a^2}\left[\sqrt{3}a^2-\frac{a^2\text{ln}|(2+\sqrt3)a|}{2}+\frac{a^2\text{ln}|a|}{2}\right]
=2b(3+lna(2+3)a2)=2b\left(\sqrt3+\frac{\text{ln}|\frac{a}{(2+\sqrt3)a}|}{2}\right)
=b(23ln2+3)=b(2\sqrt3-\text{ln}|2+\sqrt3|)
So, the correct option is (A) : b{232\sqrt3-ln(2+32+\sqrt3)}