Solveeit Logo

Question

Question: The average atomic mass of a mixture containing 79 mole % of $^{24}$Mg and remaining 21 mole % of $^...

The average atomic mass of a mixture containing 79 mole % of 24^{24}Mg and remaining 21 mole % of 25^{25}Mg and 26^{26}Mg, is 24.31. % mole of 26^{26}Mg is

A

5

B

20

C

10

D

15

Answer

10

Explanation

Solution

The average atomic mass of an element is calculated as the weighted average of the masses of its isotopes.

Given:

  • Average atomic mass of Mg = 24.31
  • Mole % of 24^{24}Mg = 79%
  • Remaining 21 mole % is a mixture of 25^{25}Mg and 26^{26}Mg.

Let the mole % of 26^{26}Mg be xx. Then, the mole % of 25^{25}Mg will be (21x)(21 - x).

The approximate atomic masses of the isotopes are:

  • 24^{24}Mg: 24 amu
  • 25^{25}Mg: 25 amu
  • 26^{26}Mg: 26 amu

Using the formula for average atomic mass:

Average Atomic Mass=(Isotopic Mass×Abundance)\text{Average Atomic Mass} = \sum (\text{Isotopic Mass} \times \text{Abundance}) 24.31=(24×79100)+(25×21x100)+(26×x100)24.31 = \left(24 \times \frac{79}{100}\right) + \left(25 \times \frac{21-x}{100}\right) + \left(26 \times \frac{x}{100}\right)

Multiply the entire equation by 100:

24.31×100=(24×79)+(25×(21x))+(26×x)24.31 \times 100 = (24 \times 79) + (25 \times (21-x)) + (26 \times x) 2431=1896+(52525x)+26x2431 = 1896 + (525 - 25x) + 26x

Combine the constant terms and the terms with xx:

2431=(1896+525)+(25x+26x)2431 = (1896 + 525) + (-25x + 26x) 2431=2421+x2431 = 2421 + x

Now, solve for xx:

x=24312421x = 2431 - 2421 x=10x = 10

Therefore, the mole % of 26^{26}Mg is 10%.