Solveeit Logo

Question

Mathematics Question on Statistics

The arithmetic mean of the data 0,1,2,,n0,1,2, \ldots \ldots, n with frequencies 1,nC1,nC2,,nCn1,{ }^{n} C_{1},{ }^{n} C_{2}, \ldots,{ }^{n} C_{n} is

A

nn

B

2nn\frac{2^n}{n}

C

n+1n + 1

D

n2\frac{n}{2}

Answer

n2\frac{n}{2}

Explanation

Solution

Since, Mean =fixifi=\frac{\sum f _{ i } x _{ i }}{\sum f _{ i }}, where xix _{ i } are observations with frequencies fi,i=1,2,.nf _{ i }, i =1,2, \ldots . n
The required mean is given by,
Xˉ=0.1+1nC1+2nC2+.+nnCn1+nC1+nC2++nCn\bar{X}=\frac{0.1+1 \cdot{ }^{n} C_{1}+2 \cdot{ }^{n} C_{2}+\ldots .+n \cdot{ }^{n} C_{n}}{1+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots +{ }^{n} C_{n}}
=r=0nnnCrr=0nnCr=nr=0nn1Cr1r=0nnCr=\frac{\displaystyle\sum_{r=0}^{n} n \cdot{ }^{n} C_{r}}{\displaystyle\sum_{r=0}^{n}{ }^{n} C_{r}}=\frac{n \displaystyle\sum_{r=0}^{n}{ }^{n-1} C_{r-1}}{\displaystyle\sum_{r=0}^{n}{ }^{n} C_{r}}
=n2n12n=n2=\frac{n 2^{n-1}}{2^{n}}=\frac{n}{2}