Solveeit Logo

Question

Mathematics Question on Quadratic Equations

The argument of the complex number sin(6π5)+i(1+cos6π5)\sin\left(\frac{6\pi}{5}\right) + i\left(1 +\cos \frac{6\pi}{5}\right) is

A

π10\frac{\pi}{10}

B

5π6\frac{5 \pi}{6}

C

π10\frac{ - \pi}{10}

D

2π5\frac{2 \pi}{5}

Answer

π10\frac{ - \pi}{10}

Explanation

Solution

Let z=sin6π5+i(1+cos6π5)z = \sin\frac{6\pi}{5} + i\left(1 +\cos \frac{6\pi}{5}\right)
putting sin6π5=rcosα\sin \frac{6\pi}{5} = r \cos \alpha ....(i)
and 1+cos6π5=rsinα1 + \cos \frac{6 \pi}{5} = r \sin \alpha .....(ii)
Dividing (ii) by (i), we get
tanα=1+cos6π5sin6π5=2cos23π52sin3π5cos3π5\tan \alpha = \frac{1+\cos \frac{6\pi}{5}}{\sin \frac{6\pi}{5}} = \frac{2 \cos^{2} \frac{3\pi}{5}}{2 \sin \frac{3\pi}{5} \cos \frac{3\pi}{5}}
tanα=cot3π5=tan(π23π5)\tan \alpha = \cot \frac{3\pi}{5} =\tan \left(\frac{\pi}{2} - \frac{3\pi}{5}\right)
tanα=tan(π10)\tan \alpha =\tan \left(\frac{-\pi}{10}\right)
\therefore argument of z is α=π10\alpha = \frac{-\pi}{10}