Solveeit Logo

Question

Question: The argument of $\frac{1+i\sqrt{3}}{\sqrt{3}+i}$ where $i = \sqrt{-1}$, is...

The argument of

1+i33+i\frac{1+i\sqrt{3}}{\sqrt{3}+i}

where i=1i = \sqrt{-1}, is

A

π3\frac{\pi}{3}

B

π6\frac{\pi}{6}

C

π2\frac{\pi}{2}

D

π4\frac{\pi}{4}

Answer

π6\frac{\pi}{6}

Explanation

Solution

To find the argument of the complex number Z=1+i33+iZ = \frac{1+i\sqrt{3}}{\sqrt{3}+i}, we can use the property of arguments: arg(z1z2)=arg(z1)arg(z2)\text{arg}\left(\frac{z_1}{z_2}\right) = \text{arg}(z_1) - \text{arg}(z_2).

Let z1=1+i3z_1 = 1+i\sqrt{3} and z2=3+iz_2 = \sqrt{3}+i.

  1. Find the argument of z1=1+i3z_1 = 1+i\sqrt{3}:

    The complex number z1z_1 is in the first quadrant (real part is positive, imaginary part is positive). Let θ1=arg(z1)\theta_1 = \text{arg}(z_1). tanθ1=Imaginary partReal part=31=3\tan \theta_1 = \frac{\text{Imaginary part}}{\text{Real part}} = \frac{\sqrt{3}}{1} = \sqrt{3}. Since 0<θ1<π20 < \theta_1 < \frac{\pi}{2}, we have θ1=π3\theta_1 = \frac{\pi}{3}.

  2. Find the argument of z2=3+iz_2 = \sqrt{3}+i:

    The complex number z2z_2 is also in the first quadrant. Let θ2=arg(z2)\theta_2 = \text{arg}(z_2). tanθ2=Imaginary partReal part=13\tan \theta_2 = \frac{\text{Imaginary part}}{\text{Real part}} = \frac{1}{\sqrt{3}}. Since 0<θ2<π20 < \theta_2 < \frac{\pi}{2}, we have θ2=π6\theta_2 = \frac{\pi}{6}.

  3. Calculate the argument of Z=z1z2Z = \frac{z_1}{z_2}:

    arg(Z)=arg(z1)arg(z2)\text{arg}(Z) = \text{arg}(z_1) - \text{arg}(z_2) arg(Z)=π3π6\text{arg}(Z) = \frac{\pi}{3} - \frac{\pi}{6} To subtract, find a common denominator: arg(Z)=2π6π6=2ππ6=π6\text{arg}(Z) = \frac{2\pi}{6} - \frac{\pi}{6} = \frac{2\pi - \pi}{6} = \frac{\pi}{6}.

Alternatively, we can first simplify the complex number by multiplying the numerator and denominator by the conjugate of the denominator: Z=1+i33+i×3i3iZ = \frac{1+i\sqrt{3}}{\sqrt{3}+i} \times \frac{\sqrt{3}-i}{\sqrt{3}-i} Z=(1)(3)+(1)(i)+(i3)(3)+(i3)(i)(3)2(i)2Z = \frac{(1)(\sqrt{3}) + (1)(-i) + (i\sqrt{3})(\sqrt{3}) + (i\sqrt{3})(-i)}{(\sqrt{3})^2 - (i)^2} Z=3i+3ii233(1)Z = \frac{\sqrt{3} - i + 3i - i^2\sqrt{3}}{3 - (-1)} Z=3+2i+34Z = \frac{\sqrt{3} + 2i + \sqrt{3}}{4} Z=23+2i4Z = \frac{2\sqrt{3} + 2i}{4} Z=32+i12Z = \frac{\sqrt{3}}{2} + i\frac{1}{2}

Now, find the argument of Z=32+i12Z = \frac{\sqrt{3}}{2} + i\frac{1}{2}: Let ϕ=arg(Z)\phi = \text{arg}(Z). Since ZZ is in the first quadrant. tanϕ=Imaginary partReal part=1/23/2=13\tan \phi = \frac{\text{Imaginary part}}{\text{Real part}} = \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}. Therefore, ϕ=π6\phi = \frac{\pi}{6}.