Solveeit Logo

Question

Question: The argument of \[\dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 + i\sqrt 3 } \right)}}\] is ...

The argument of (1i3)(1+i3)\dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 + i\sqrt 3 } \right)}} is
A.6060^\circ
B.120120^\circ
C.210210^\circ
D.240240^\circ

Explanation

Solution

First we will first rationalize the given expression by multiplying numerator and denominator by 1+i31 + i\sqrt 3 . Then use the property, a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) in the denominator and (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}in the numerator of the obtained equation to simplify it. Then we will use the trigonometric values to find the argument.

Complete step-by-step answer:
We are given (1i3)(1+i3)\dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 + i\sqrt 3 } \right)}}.
Let us assume that z=(1i3)(1+i3)z = \dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 + i\sqrt 3 } \right)}}.
Rationalizing the given expression by multiplying numerator and denominator by 1+i31 + i\sqrt 3 , we get

z=(1i3)(1+i3)×(1i3)(1i3) z=(1i3)2(1+i3)(1i3)  \Rightarrow z = \dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 + i\sqrt 3 } \right)}} \times \dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 - i\sqrt 3 } \right)}} \\\ \Rightarrow z = \dfrac{{{{\left( {1 - i\sqrt 3 } \right)}^2}}}{{\left( {1 + i\sqrt 3 } \right)\left( {1 - i\sqrt 3 } \right)}} \\\

Using the property, a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) in the denominator and (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}in the numerator of the above equation, we get

z=122×1×i3+(i3)212(i3)2 z=12i3+3i213i2  \Rightarrow z = \dfrac{{{1^2} - 2 \times 1 \times i\sqrt 3 + {{\left( {i\sqrt 3 } \right)}^2}}}{{{1^2} - {{\left( {i\sqrt 3 } \right)}^2}}} \\\ \Rightarrow z = \dfrac{{1 - 2i\sqrt 3 + 3{i^2}}}{{1 - 3{i^2}}} \\\

Using the property of complex number i2=1{i^2} = - 1 in the above equation, we get

z=12i3+3(1)13(1) z=12i331+3 z=2i324  \Rightarrow z = \dfrac{{1 - 2i\sqrt 3 + 3\left( { - 1} \right)}}{{1 - 3\left( { - 1} \right)}} \\\ \Rightarrow z = \dfrac{{1 - 2i\sqrt 3 - 3}}{{1 + 3}} \\\ \Rightarrow z = \dfrac{{ - 2i\sqrt 3 - 2}}{4} \\\

Taking 2 common from the numerator in the above equation, we get

z=2(i31)4 z=i312 z=i3212  \Rightarrow z = \dfrac{{2\left( { - i\sqrt 3 - 1} \right)}}{4} \\\ \Rightarrow z = \dfrac{{ - i\sqrt 3 - 1}}{2} \\\ \Rightarrow z = - \dfrac{{i\sqrt 3 }}{2} - \dfrac{1}{2} \\\

We know that the standard equation for the complex number zz is cosθ+isinθ\cos \theta + i\sin \theta .
Using the standard equation and the trigonometric values, sin240=32\sin 240^\circ = - \dfrac{{\sqrt 3 }}{2} and cos240=12\cos 240^\circ = - \dfrac{1}{2} in the above expression, we get
cos240+isin240\Rightarrow \cos 240^\circ + i\sin 240^\circ
Thus, the argument of the given expression is 240240^\circ .
Hence, option D is correct.

Note: In solving these types of questions, students should know the basic properties and values of trigonometric functions. Since 32 - \dfrac{{\sqrt 3 }}{2} and 12 - \dfrac{1}{2} are both negative values, it lies in the fourth quadrant.