Question
Question: The area of triangle with vertices (1, 2, 0), (1, 0, a) and (0, 3, 1) is $\sqrt{6}$ sq. units, then ...
The area of triangle with vertices (1, 2, 0), (1, 0, a) and (0, 3, 1) is 6 sq. units, then the values of a are
A
- 8, 1
B
2, -4
C
-2, 4
D
8, -1
Answer
2, -4
Explanation
Solution
Solution:
Let the vertices be:
A=(1,2,0), B=(1,0,a), C=(0,3,1).
- Find vectors:
AB=B−A=(0,−2,a)
AC=C−A=(−1,1,1)
- Compute the cross product:
AB×AC=((−2⋅1−a⋅1),−(0⋅1−a⋅(−1)),0⋅1−(−2)(−1)) =(−2−a,−a,−2)
- Its magnitude is:
∣AB×AC∣=[(a+2)2+a2+22]=[(a+2)2+a2+4] =[a2+4a+4+a2+4]=[2a2+4a+8]
- The area of the triangle is 21∣AB×AC∣. Given that area = 6, set:
21(2a2+4a+8)=6
⇒(2a2+4a+8)=26
Square both sides: 2a2+4a+8=4×6=24
⇒2a2+4a−16=0
Divide by 2: a2+2a−8=0
- Solve the quadratic:
a2+2a−8=0
(a+4)(a−2)=0
Thus, a=2 or a=−4
Explanation (Minimal):
- Compute AB and AC.
- Find AB×AC=(−(a+2),−a,−2).
- Set 21[(a+2)2+a2+4]=6, square to get a2+2a−8=0.
- Solve to get a=2 or a=−4.