Solveeit Logo

Question

Question: The area of triangle with vertices (1, 2, 0), (1, 0, a) and (0, 3, 1) is $\sqrt{6}$ sq. units, then ...

The area of triangle with vertices (1, 2, 0), (1, 0, a) and (0, 3, 1) is 6\sqrt{6} sq. units, then the values of a are

A
  • 8, 1
B

2, -4

C

-2, 4

D

8, -1

Answer

2, -4

Explanation

Solution

Solution:

Let the vertices be:

A=(1,2,0)A = (1, 2, 0), B=(1,0,a)B = (1, 0, a), C=(0,3,1)C = (0, 3, 1).

  1. Find vectors:

AB=BA=(0,2,a)AB = B - A = (0, -2, a)

AC=CA=(1,1,1)AC = C - A = (-1, 1, 1)

  1. Compute the cross product:

AB×AC=((21a1),(01a(1)),01(2)(1))AB \times AC = ( (-2 \cdot 1 - a \cdot 1), -(0 \cdot 1 - a \cdot (-1)), 0 \cdot 1 - (-2)(-1) ) =(2a,a,2)= ( -2 - a, -a, -2 )

  1. Its magnitude is:

AB×AC=[(a+2)2+a2+22]=[(a+2)2+a2+4]|AB \times AC| = \sqrt{[(a + 2)^2 + a^2 + 2^2]} = \sqrt{[(a + 2)^2 + a^2 + 4]} =[a2+4a+4+a2+4]=[2a2+4a+8]= \sqrt{[a^2 + 4a + 4 + a^2 + 4]} = \sqrt{[2a^2 + 4a + 8]}

  1. The area of the triangle is 12AB×AC\frac{1}{2}|AB \times AC|. Given that area = 6\sqrt{6}, set:

12(2a2+4a+8)=6\frac{1}{2}\sqrt{(2a^2 + 4a + 8)} = \sqrt{6}

(2a2+4a+8)=26\Rightarrow \sqrt{(2a^2 + 4a + 8)} = 2\sqrt{6}

Square both sides: 2a2+4a+8=4×6=242a^2 + 4a + 8 = 4 \times 6 = 24

2a2+4a16=0\Rightarrow 2a^2 + 4a - 16 = 0

Divide by 2: a2+2a8=0a^2 + 2a - 8 = 0

  1. Solve the quadratic:

a2+2a8=0a^2 + 2a - 8 = 0

(a+4)(a2)=0(a+4)(a-2) = 0

Thus, a=2a = 2 or a=4a = -4

Explanation (Minimal):

  • Compute AB and AC.
  • Find AB×AC=((a+2),a,2)AB \times AC = (-(a+2), -a, -2).
  • Set 12[(a+2)2+a2+4]=6\frac{1}{2}\sqrt{[(a+2)^2 + a^2 + 4]} = \sqrt{6}, square to get a2+2a8=0a^2 + 2a - 8 = 0.
  • Solve to get a=2a = 2 or a=4a = -4.