Solveeit Logo

Question

Question: The area of the triangle with vertices \(A\left( 3,7 \right),B\left( -5,2 \right),\) and \(C\left( 2...

The area of the triangle with vertices A(3,7),B(5,2),A\left( 3,7 \right),B\left( -5,2 \right), and C(2,5)C\left( 2,5 \right) is denoted by Δ\Delta . If ΔA,ΔB,ΔC{{\Delta }_{A}},{{\Delta }_{B}},{{\Delta }_{C}} denote the area of the triangles with vertices OBC,AOC  OBC,AOC\; and ABO  ABO\; respectively, OO being the origin, then
A. ΔA+ΔB=Δ+ΔC{{\Delta }_{A}}+{{\Delta }_{B}}=\Delta +{{\Delta }_{C}}
B. ΔA+ΔB=ΔCΔ{{\Delta }_{A}}+{{\Delta }_{B}}={{\Delta }_{C}}-\Delta
C. ΔA+ΔB=2ΔC{{\Delta }_{A}}+{{\Delta }_{B}}=2{{\Delta }_{C}}
D. ΔA+ΔB+ΔC=2Δ{{\Delta }_{A}}+{{\Delta }_{B}}+{{\Delta }_{C}}=2\Delta

Explanation

Solution

We need to find the area of all the triangles given in the question. Firstly, we need to find the values of Δ,ΔA,ΔB,ΔC\Delta ,{{\Delta }_{A}},{{\Delta }_{B}},{{\Delta }_{C}} using the area of the triangle formula. Then, we need to find the relationship between the areas to get the desired result.

Complete step by step solution:
We are given the vertices of the triangle and need to find the area of the triangles. We will be solving the given question using the area of the triangle formula.
The area of the triangle with vertices (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) , (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) and (x3,y3)\left( {{x}_{3}},{{y}_{3}} \right) is given by α\alpha .
α=12x1y11 x2y21 x3y31 \Rightarrow \alpha =\dfrac{1}{2}\left| \begin{matrix} {{x}_{1}} & {{y}_{1}} & 1 \\\ {{x}_{2}} & {{y}_{2}} & 1 \\\ {{x}_{3}} & {{y}_{3}} & 1 \\\ \end{matrix} \right|The value of the determinant is given by
α=12x1(y2y3)+x2(y3y1)+x3(y1y2)\Rightarrow \alpha =\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right|
The area of the triangle with vertices (3,7),(5,2),\left( 3,7 \right),\left( -5,2 \right), and (2,5)\left( 2,5 \right) is given by Δ\Delta .
Find the value of Δ\Delta using the above formula, we get,
Δ=12371 521 251 \Rightarrow \Delta =\dfrac{1}{2}\left| \begin{matrix} 3 & 7 & 1 \\\ -5 & 2 & 1 \\\ 2 & 5 & 1 \\\ \end{matrix} \right|The value of the determinant is given by
Δ=123(25)7((5)2)+1((25)4)\Rightarrow \Delta =\dfrac{1}{2}\left| 3\left( 2-5 \right)-7\left( \left( -5 \right)-2 \right)+1\left( \left( -25 \right)-4 \right) \right|
Simplifying the above equation, we get,
Δ=123(3)7(7)+1(29)\Rightarrow \Delta =\dfrac{1}{2}\left| 3\left( -3 \right)-7\left( -7 \right)+1\left( -29 \right) \right|
Evaluating the equation further,
Δ=129+4929\Rightarrow \Delta =\dfrac{1}{2}\left| -9+49-29 \right|
Δ=112\therefore \Delta =\dfrac{11}{2}
The area of the triangle with vertices (0,0),(5,2),\left( 0,0 \right),\left( -5,2 \right), and (2,5)\left( 2,5 \right) is given by ΔA{{\Delta }_{A}}
Find the value of ΔA{{\Delta }_{A}} using the above formula, we get,
ΔA=12001 521 251 \Rightarrow {{\Delta }_{A}}=\dfrac{1}{2}\left| \begin{matrix} 0 & 0 & 1 \\\ -5 & 2 & 1 \\\ 2 & 5 & 1 \\\ \end{matrix} \right|The value of the determinant is given by
ΔA=120(25)0((5)2)+1((25)4)\Rightarrow {{\Delta }_{A}}=\dfrac{1}{2}\left| 0\left( 2-5 \right)-0\left( \left( -5 \right)-2 \right)+1\left( \left( -25 \right)-4 \right) \right|
Simplifying the above equation, we get,
ΔA=12((25)4)\Rightarrow {{\Delta }_{A}}=\dfrac{1}{2}\left| \left( \left( -25 \right)-4 \right) \right|
ΔA=1229\Rightarrow {{\Delta }_{A}}=\dfrac{1}{2}\left| -29 \right|
ΔA=292\therefore {{\Delta }_{A}}=\dfrac{29}{2}
The area of the triangle with vertices (3,7),(0,0),\left( 3,7 \right),\left( 0,0 \right), and (2,5)\left( 2,5 \right) is given by ΔB{{\Delta }_{B}}
Find the value of ΔB{{\Delta }_{B}} using the above formula, we get,
ΔB=12371 001 251 \Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| \begin{matrix} 3 & 7 & 1 \\\ 0 & 0 & 1 \\\ 2 & 5 & 1 \\\ \end{matrix} \right|The value of the determinant is given by
ΔB=123(05)7(02)+1(00)\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| 3\left( 0-5 \right)-7\left( 0-2 \right)+1\left( 0-0 \right) \right|
Simplifying the above equation, we get,
ΔB=123(5)7(2)+0\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| 3\left( -5 \right)-7\left( -2 \right)+0 \right|
ΔB=1215+14\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| -15+14 \right|
ΔB=121\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| -1 \right|
ΔB=12\therefore {{\Delta }_{B}}=\dfrac{1}{2}
The area of the triangle with vertices (3,7),(5,2),\left( 3,7 \right),\left( -5,2 \right), and (0,0)\left( 0,0 \right) is given by ΔC{{\Delta }_{C}}
ΔC=12371 521 001 \Rightarrow {{\Delta }_{C}}=\dfrac{1}{2}\left| \begin{matrix} 3 & 7 & 1 \\\ -5 & 2 & 1 \\\ 0 & 0 & 1 \\\ \end{matrix} \right|The value of the determinant is given by
ΔC=123(20)7(50)+1(00)\Rightarrow {{\Delta }_{C}}=\dfrac{1}{2}\left| 3\left( 2-0 \right)-7\left( -5-0 \right)+1\left( 0-0 \right) \right|
Simplifying the above equation, we get,
ΔC=126+35+1\Rightarrow {{\Delta }_{C}}=\dfrac{1}{2}\left| 6+35+1 \right|
ΔC=412\therefore {{\Delta }_{C}}=\dfrac{41}{2}
From the above,
ΔA+ΔB+Δ=292+12+112\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}+\Delta =\dfrac{29}{2}+\dfrac{1}{2}+\dfrac{11}{2}
ΔA+ΔB+Δ=29+1+112\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}+\Delta =\dfrac{29+1+11}{2}
ΔA+ΔB+Δ=412\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}+\Delta =\dfrac{41}{2}
We know that ΔC=412{{\Delta }_{C}}=\dfrac{41}{2} . Substituting the same, we get,
ΔA+ΔB+Δ=ΔC\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}+\Delta ={{\Delta }_{C}}
Moving the term Δ\Delta to the other side of the equation, we get,
ΔA+ΔB=ΔCΔ\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}={{\Delta }_{C}}-\Delta

So, the correct answer is “Option B”.

Note: We need to keep in mind that the correct formula has to be applied and the values substituted should be correct while solving these questions. The result of the given question can be cross-checked using the equation
ΔA+ΔB=ΔCΔ{{\Delta }_{A}}+{{\Delta }_{B}}={{\Delta }_{C}}-\Delta
LHS:
ΔA+ΔB\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}
292+12\Rightarrow \dfrac{29}{2}+\dfrac{1}{2}
302\Rightarrow \dfrac{30}{2}
15\Rightarrow 15
RHS:
ΔCΔ\Rightarrow {{\Delta }_{C}}-\Delta
412112\Rightarrow \dfrac{41}{2}-\dfrac{11}{2}
302\Rightarrow \dfrac{30}{2}
15\Rightarrow 15
LHS =  =\; RHS
The result attained is correct.