Solveeit Logo

Question

Mathematics Question on Applications of Determinants and Matrices

The area of the triangle whose vertices are complex numbers z, iz, z + iz in the Argand diagram is

A

2z22|z|^2

B

1/2z2 1/2 |z|^2

C

4z24|z|^2

D

z2 |z|^2

Answer

1/2z2 1/2 |z|^2

Explanation

Solution

Vertices of triangle in complex form is z,iz,z+izz, iz, z+iz In cartesian form vertices are (x, y), (-y, x) and (xy,x+y)(x-y, x+y) \therefore Area of triangle =12xy1 yx1 xyx+y1= \frac{1}{2}\begin{vmatrix}x&y&1\\\ -y&x&1\\\ x-y&x+y&1\end{vmatrix} =12[x(xxy)y(yx+y)+1]= \frac{1}{2}\left[x\left(x-x-y\right)-y\left(-y-x+y\right)+1\right] (yxy2x2+xy)\left(-yx-y^{2}-x^{2} + xy\right) =12[xy+xyy2x2]=12(x2+y2)= \frac{1}{2}\left[-xy + xy-y^{2}-x^{2}\right]=\frac{1}{2} \left(x^{2}+y^{2}\right) (\because Area can not be negative) =12z2(z=x+iy,z2=x2+y2)= \frac{1}{2}\left|z\right|^{2}\quad\quad\left(\because z = x+iy, \left|z\right|^{2} = x^{2}+y^{2}\right)