Solveeit Logo

Question

Question: The area of the triangle formed by the tangent to the hyperbola \(x y = a ^ { 2 }\) and co-ordinat...

The area of the triangle formed by the tangent to the hyperbola xy=a2x y = a ^ { 2 } and co-ordinate axes is

A

a2a ^ { 2 }

B

2a22 a ^ { 2 }

C

3a23 a ^ { 2 }

D

4a24 a ^ { 2 }

Answer

2a22 a ^ { 2 }

Explanation

Solution

Given xy=a2x y = a ^ { 2 } or y=a2xy = \frac { a ^ { 2 } } { x } .....(i)

There are two points on the curve (a, a),(– a,– a)

The equation of the line at (a,a)( a , a )is,

ya=(dydx)(a,a)(xa)y - a = \left( \frac { d y } { d x } \right) _ { ( a , a ) } ( x - a ) =(a2x2)(a,a)(xa)= \left( \frac { - a ^ { 2 } } { x ^ { 2 } } \right) _ { ( a , a ) } ( x - a )

ya=(xa)y - a = - ( x - a ) Therefore, equation of the tangent at (a,a)( a , a ) is x+y=2ax + y = 2 a.The interception of line x+y=2ax + y = 2 a with x-axis is 2a and with y-axis is 2a.

\therefore Required area = 12×2a×2a=2a2\frac { 1 } { 2 } \times 2 a \times 2 a = 2 a ^ { 2 }.